
AD-A250 093 "
fi|flflIlII)STGRADUATE SCHOOL

Monterey, California

RDTIELECTHE

MAY 19

THESIS

MINEFIELD SEARCH AND OBJECT RECOGNITION FOR
AUTONOMOUS UNDERWATER VEHICLES

by

Mark A. Compton

March 1992

Thesis Advisor: Dr. Man-Tak Shing

Approved for public release; distribution is unlimited.

92-12969IIIEllliii

9 :.a

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
ia. REPORT SECURITY CLASSIFICATION UNCLASSIFIED lb RESTRICTIVE MARKINGS

2a SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Approved for public release;
distribution is unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

§ NAME OF JgEFIFORIG ORGANIZATION 6b. OFFICE SYMBOL 7a, NAME OF MONITORING ORGANIZATION
Computer cience uept. (if applicable) Naval Postgraduate School
Naval Postgraduate School CS
6c. ADDRESS (City, State, and ZI Code) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5000 Monterey, CA 93943-5000

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)

8c. ADDRESS (City, State, andZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK - _WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO.

11. TITLE (Include Security Classification)
MINEFIELD SEARCH AND OBJECT RECOGNITION FOR AUTONOMOUS UNDERWATER VEHICLES

e PERSNA tLU HR(S)m0trpton, Mark A.
1terb. TIME COVERED DATE OF REPORT (Year, Month, Day) 15. COUNT

esI FROM .04/90 TO.03/92 1992, March, 26 D 257
16. SUPPLEMENTARY NOTATION The views expressed in this thesis are those of the author and do not reflect the official

policy or position of the Department of Defense or the United States Government.

17. COSATI CODES I 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP I SUB-GROUP I Autonomous Underwater Vehicle (AUV), minefield search, search, mineI warfare, underwater object recognition, sonar classification, expert system

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
Autonomous Underwater Vehicles (AUV) are an outstanding minefield search platform. Because of their stealthy nature, AUVs can be

deployed in a potential minefield without the enemy's knowledge. They also minimize dangerous exposure to manned and more expensive
naval assets. This thesis explores two important and related aspects of AUV minefield search: exhaustive sensor coverage of a minefield
through effective path planning and underwater object recognition using the vehicle's sensors.

The minefield search algorithm does not require a priori knowledge of the world except for user-defined boundaries. It is a three-dimen-
sional, prioritized sub-area graph search using a ladder based methodology and an A* optimal path planning algorithm. The minefield search
algorithm effectively ignores areas which are blocked by obstacles, performs terrain following and avoids local minima problems encoun-
tered by other area search solutions. The algorithm is shown to be effective using a variety of graphical simulators.

The object recognition algorithm provides autonomous classification of underwater objects. It uses geometric reasoning and line fitting
of raw sonar data to form geometric primitives. These primitives are analyzed by a CLIPS language expert system using heuristic based rules.
The resulting classifications may be used for higher level mission planning modules for effectively conducting the minefield search. Actual
NPS AUV swimming pool test runs and graphic simulations are used to demonstrate this algorithm which was built in cooperation with Lieu-
tenant Commander Donald P. Brutzman,

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY LSIFICATION
[3UNCLASSIFIED/UNLIMITED [5 SAMEAS RPT. [] DTIC USERS UNCLASSIFIED

.,M EONS'LE INDIVIDUAL 22b. TELEPHONEl Include Area Code) c
m.an- ing (408) 646-2634

DD FORM 1473,84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete UNCLASSIFIED

i

Approved for public release; distribution is unlimited

MINEFIELD SEARCH AND OBJECT RECOGNITION
FOR

AUTONOMOUS UNDERWATER VEHICLES

by
Mark A. Compton

Lieutenant Commander, United States Navy
B.A., Washington State University, 1980
M.B.A., San Jose State University, 1987

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
March 1992

Author: 7 ?a/ Q. CaZ
Mark A. Compton

Approved By: SMan-Tak Shing, Thesis Advisor

Yiaka Kanayama, Second Reader

Robert B. McGhee, Chairman,
Department of Computer Science

ii

ABSTRACT

Autonomous Underwater Vehicles (AUV) are an outstanding minefield search

platform. Because of their stealthy nature, AUVs can be deployed in a potential minefield

without the enemy's knowledge. They also minimize dangerous exposure to manned and

more expensive naval assets. This thesis explores two important and related aspects of

AUV minefield search: exhaustive sensor coverage of a minefield through effective path

planning and underwater object recognition using the vehicle's sensors.

The minefield search algorithm does not require a priori knowledge of the world

except for user-defined boundaries. It is a three-dimensional, prioritized graph search using

a ladder based methodology and an A* optimal path planning algorithm. The minefield

search algorithm effectively ignores areas which are blocked by obstacles, performs terrain

following and avoids local minima problems encountered by other area search solutions.

The algorithm is shown to be effective using a variety of graphical simulators.

The object recognition algorithm provides autonomous classification of underwater

objects. It uses geometric reasoning and line fitting of raw sonar data to form geometric

primitives. These primitives are analyzed by a CLIPS language expert system using

heuristic based rules. The resulting classifications may be used for higher level mission

planning modules for effectively conducting the minefield search. Actual NPS AUV

swimming pool test runs and graphic simulations are used to demonstrate this algorithm

which was built in cooperation with Lieutenant Commander Donald P. Brutzman, USN.

coeoshon -ow7
'lTIS GRtAI

DTIC TAB 0
Unannounced 0
Justification

Distribution/

Availability Codes
iii Avail and/or

DInt Specialo p'. I t'

' aI I I t 1m I

TABLE OF CONTENTS

1. INTRODU CTIO N ... 1
A. AUTONOMOUS UNDERWATER VEHICLES (AUV) I
B. MINEFIELD SEARCH MOTIVATION ... 3
C. THESIS OBJECTIVES .. 4
D. THESIS ORGANIZATION .. 4

II. BACKGROUND ... 6
A. THE NPS AUV PROJECT .. 6
B. RELATED AUV RESEARCH ... 13
C. RELATED SEARCH ALGORITHM CONSIDERATIONS 15

III. MINEFIELD SEARCH PROBLEM CONSIDERATIONS 22
A. THE MISSION ... 22
B. TARGET CHARACTERISTICS .. 24
C. ENVIRONMENT CONSIDERATIONS ... 26
D. AUV EQUIPMENT AND PERFORMANCE CONSIDERATIONS 31
E. NAVIGATION CONSIDERATIONS .. 32

IV. MINEFIELD SEARCH PROBLEM SOLUTION .. 34
A. MINEFIELD SEARCH PHILOSOPHY .. 34
B. MINEFIELD WORLD REPRESENTATION .. 34
C. MINEFIELD SEARCH ASSUMPTIONS .. 45
D. SUMMATION OF MINEFIELD SEARCH REQUIREMENTS 46
E. HIGH-LEVEL MINEFIELD SEARCH ALGORITHM 47
F. INTERMEDIATE-LEVEL PATH PLANNING ALGORITHM 54
G. MINEFIELD SEARCH PERFORMANCE .. 60
H. EXPERIMENTAL RESULTS ... 61
I. CHANGING OBSTACLE ENVIRONMENT CONSIDERATIONS 62
J. CONCLUSIONS AND FUTURE ALGORITHM DEVELOPMENT 63

V. MINEFIELD SEARCH SIMULATION .. 65
A. EVALUATION THROUGH VISUALIZATION ... 65
B. THREE-DIMENSIONAL LINE-OF-SIGHT GUIDANCE MODULE 72
C. CONCLUSIONS AND FUTURE DEVELOPMENT 76

VI. AUTONOMOUS SONAR CLASSIFICATION USING EXPERT SYSTEMS 78
A. INTRODUCTION ... 78
B. O VERVIEW .. 79
C. GEOMETRIC ANALYSIS OF SONAR DATA ... 81
D. EXPERT SYSTEM HEURISTICS FOR SONAR CLASSIFICATION 90
E. EXPERT SYSTEM PARADIGM .. 93
F. IMPLEMENTATION AND EVALUATION ... 96
G. EXPERIMENTAL RESULTS ... 98
H. DISCUSSIONS AND APPLICATIONS ... 101
I. CONCLUSIONS AND FUTURE DEVELOPMENT 104

V II. C O N CLU SIO N ... 105

iv

7 I

APPENDIX A: TWO-DIMENSIONAL MINEFIELD SEARCH SOURCE CODE 106

APPENDIX B: THREE-DIMENSIONAL MINEFIELD SEARCH SOURCE CODE... 132

APPENDIX C: TWO-DIMENSIONAL GRAPH SEARCH EVALUATION
TOOL SOURCE CODE .. 160

APPENDIX D: THREE-DIMENSIONAL GRAPH SEARCH EVALUATION
TOOL SOURCE CODE .. 176

APPENDIX E: AUV SIMULATOR GUIDANCE MODULE SOURCE CODE 195

APPENDIX F: AUTONOMOUS SONAR CLASSIFICATION EXPERT
SYSTEM SOURCE CODE .. 211

LIST OF REFERENCES ... 243

INITIAL DISTRIBUTION LIST ... 247

ACKNOWLEDGEMENTS

This thesis could not have been successfully completed without the unselfish

assistance of the following professionals.

MAJ Stefan A. H. Westman, Swedish Army, was particularly helpful in analyzing the

minefield search concept. His creativity and analytical skills helped to keep me focused on

feasible solutions. I am grateful for the assistance he eagerly provided at all hours of the

day.

LCDR Donald P. Brutzman, USN, coauthored two papers and one thesis chapter. His

undying motivation to pursue good scientific research was highly infectious. His ingenuity

and ability to conceptualize the abstract were critical in developing the sonar analysis

expert system. His NPS AUV Integrated Graphic Simulator allowed important

visualization of all of the code presented in this thesis.

I am forever grateful for the close friendship of both of these officers.

The stimulating interaction with all of the members of the NPS AUV project was

important to the development of this thesis. I am particularly grateful to the project leaders,

Dr. Anthony M. Healey and Dr. Robert B. McGhee, for their inspiring leadership.

Dr. Man-Tak Shing and Dr. Yutaka Kanayama, my thesis advisors, are two of the

most intellectually stimulating people that I have encountered. I sincerely appreciate their

astute guidance and patience.

I dedicate this thesis to my wife, Deborah, for her unwavering support and love.

vi

I. INTRODUCTION

A. AUTONOMOUS UNDERWATER VEHICLES (AUV)

Throughout the history of warfare, man's offensive weapons have progressively

evolved, delivering greater destruction at longer ranges with increased accuracy. The

development of such weapons has been accompanied by an increase in defensive weapon

sophistication designed to deny the enemy the information necessary to target his weapons,

to strike down the offensive weapon prior to terminal destruction, or to prevent the enemy

from gaining ground close enough to deliver his weapons.

The introduction of calvary, archery, artillery and rocketry marks major milestones in

warfare. The more recent, rocketry, required sophisticated guidance and control systems

capable of withstanding the immense G forces associated with launch and maneuvering.

Solid state circuitry provided the physical basis for such systems during the middle part of

this century. It was the silicon computer chip introduced in the 1970's, however, which

provided miniaturized advanced logic circuitry small enough to fit into small rockets and

missiles and sophisticated enough to perform midcourse evaluation and guidance

calculations. One of the most recent products of this technology has been the cruise missile.

This weapon is able to not only store prescribed, multi-legged, flight paths but also to

analyze the tactical environment enroute to its target and adjust its tactical profile according

to some heuristic logic. The technology necessary for cruise missiles has found other uses

in weaponry. One particular beneficiary is the autonomous underwater vehicle or AUV.

An AUV is an unmanned, untethered free-swimmer robot with sufficient on-board

intelligence to perceive uncharted and unplanned situations and take action in response. An

extension of this definition would include the ability to evaluate external circumstances and

adjust the conduct of an entire mission as necessary to achieve the most desirable outcome.

The nature of an AUV highlights numerous qualities which make it attractive for Navy

missions:

- low active sonar profile

- extremely quiet propulsion

- operates unattended in any weather

- inexpensive when compared to manned units of similar capability

- easily reprogrammed to adjust for changing mission or enemy intelligence

- potential long endurance

- does not require extensive and expensive external support

- unmanned (eliminate hazard to human)

Given this basic definition of an AUV and a list of its qualities, it is apparent that such

a vehicle would be particularly well suited to many Navy mission applications. Mine

detection and minefield mapping could be completely performed by an AUV in direct

support of a submarine or surface ship. AUVs could conduct reconnaissance of amphibious

landing areas. They could quickly clear transit lanes for fleet deployment or amphibious

assault. Dropping an AUV from an aircraft could be a fast way to initiate harbor or choke

point surveillance; in this role it could act as a "bell-ringer" against hostile ships. AUVs

could perform large area bottom searches for high-value objects. They could deliver

underwater sensors or weapons. These and potentially many other missions could be

performed by an AUV at a lower cost and at no risk to either human life or expensive

manned equipment.[Ref. I]

The many benefits of an AUV in these Navy missions make it important that extensive

research be conducted in both hardware and software design and that real-world type

applications be thoroughly planned for and tested. The demonstration of the feasibility of

these applications is critical in not only ensuring that AUVs are ready to meet fleet

requirements but also in demonstrating the value of this new technology to the fleet

hierarchy.

2

B. MINEFIELD SEARCH MOTIVATION

Mines have become an increasingly vital weapon in waging war since their first

introduction during the American Civil War. They are relatively cheap and easy to produce,

safe to transport, easy to deploy, difficult to detect and effective even when they do not

destroy an enemy unit. The mere threat of the presence of a minefield can deny the use of

bodies of water to the enemy. Mines also lend themselves to modern microchip technology.

They can be exceptionally "smart", laying unpredictably dormant until the proper

combination of environmental and target related detonation criteria are met.

While sophisticated mine warfare has always been conducted by the major naval

powers, mines have increasingly become a weapon of choice for third-world countries for

exerting military and political influence at sea. They are the most dramatic "force

multiplier" in a sea-going arsenal. A strong case in point is the use of mines during the

1990-1991 Gulf War. Even though the mines deployed by the Iraq regime against United

Nations Coalition Forces were generally unsophisticated, they tied up a dramatic portion of

Coalition naval assets in the mine-countermeasure mission. Additionally, the USS

Princeton (CG-59) and the USS Tripoli (LPH- 10), both highly significant offensive assets,

were taken out of action early in the conflict by Iraqi mines. The result in loss of naval and

marine assets during the conflict and the over a third of a billion dollars in repair costs

emphasizes the need for serious counters to this threat.[Ref. 2][Ref. 3]

AUVs are an outstanding minefield search platform under most circumstances.

Because of their "stealthy" nature, they can be deployed in a potential minefield without

the enemy's knowledge. AUVs minimize dangerous exposure to manned and more

expensive naval assets. They can report the presence and locations of mines to their parent

unit and may even be able to autonomously neutralize many types of mines.

The benefits of employing AUVs in mine warfare alone necessitate rapid research and

development in this important technology.

C. THESIS OBJECTIVES

The primary objective of this thesis is to demonstrate an efficient and effective method

for searching a minefield and identifying mine-like objects using an AUV. To this end it

will address the following issues:

- What are the NPS AUV's current capabilities?

- What research efforts are directly related to minefield search and mine
identification?

- What environmental, equipment and target considerations must be addressed?

- What search technique can effectively conduct the minefield search?

- What graphic based tools can be effectively used for minefield search
algorithm evaluation?

- How can the minefield search algorithm be demonstrated on the NPS AUV
Integrated Graphic Simulator?

- What Al methods can be used to analyze and classify sonar detected objects
including mine-like objects?

It is a goal of this thesis to meld real-world considerations with technical solutions so

that the reader feels a close association with expected "fleet" concerns while understanding

the theoretical basis of these solutions.

D. THESIS ORGANIZATION

Chapter II provides a background on AUV research in naval missions and a

description of the NPS AUV II project. Chapter III addresses the general minefield search

problem taking into account real world considerations. Chapter IV presents an original

algorithm suited to minefield area search. Chapter V addresses graphic simulation for AUV

minefield search evaluation. Chapter V also presents an AUV guidance model for use in

graphic simulators. Chapter VI presents an expert system which processes sonar

information and postulates the identification of underwater contacts. This expert system

4

was developed jointly with Lieutenant Commander Donald P. Brutzman, USN, of the

Naval Postgraduate School. Conclusions are presented in Chapter VII.

Appendix A and Appendix B contain the two-dimensional and three-dimensional

minefield search source code. Appendix C and Appendix D present the source code for the

Two-Dimensional and the Three-Dimensional Graph Search Evaluation Tools. Appendix

E contains AUV simulator guidance module source code. All of the above code is written

in ANSI C. Finally, Appendix F presents the autonomous sonar classification expert system

source code which was coauthored with LCDR Donald P. Brutzman USN.

5

H. BACKGROUND

A. THE NPS AUV PROJECT

The NPS AUV project began in 1987 under the sponsorship of the Naval Surface

Weapons System (NSWC) at White Oak, Maryland. This research is the direct

responsibility of the Mechanical Engineering, Computer Science, and Electrical and

Computer Engineering departments. The first NPS vehicle, NPS AUV I, was built by Glenn

Brunner of the Mechanical Engineering department. This vehicle was small, 30 by 7 by 3.5

inches, and was designed after the Navy's Swimmer Delivery Vehicle (SDV). It was a

tethered vehicle which received control inputs from an IBM-AT. Model-based

maneuvering control tests, including automatic identification of significant hydrodynamic

characteristics were conducted in a 4 foot by 4 foot by 40 foot test tank located in the

Mechanical Engineering building. The need for evaluation of a more robust and

autonomous vehicle led to the design and development of the NPS AUV II.[Ref. 4] It was

launched by the Superintendent, RADM Ralph W. West, Jr. at the NPS swimming pool on

June 15, 1990.

1. NPS AUV II Vehicle Characteristics

The shell is an aluminum box measuring 16" by 10" by 72". The nose section is

a 20" fiberglass dome housing the vehicle's sonar transducers. It is neutrally buoyant and

displaces about 390 pounds. Longitudinal thrust is provided by two stem propellers driven

by counter-rotating 24 volt/one-eighth horse power motors. Four cross-body tubes have

been provided to house two unique thrusters currently under development. These thrusters

will allow the vehicle to control vehicle posture and maintain station in the presence of

underwater currents. The thrusters will also permit vertical motion, allowing the vehicle to

maneuver in very limited space. Lead-acid gel batteries give the vehicle an endurance of

two to three hours. Maximum speed is about two knots. There are four vertical and four

6

horizontal independently controlled planes. The AUV's turning diameter is about 20 feet,

designed to be ideal for maneuvering in the NPS large-size swimming pool. The vehicle is

currently limited to approximately 100 elevation angle. This limitation is center of gravity

dependent. The center of gravity of the vehicle may be adjusted to meet almost any

elevation requirements. Navigation sensing and control is provided by a flux gate compass,

directional gyroscope, vertical gyroscope, a three axis rate gyroscope system with

translational accelerometers and a paddlewheel speed sensor. Refer to Figure 1 for the NPS

AUV II general schematic.[Ref. 5]

IM U
MN Battery U U

Batt ry W 00 rack

Sonar transducers Tunnel thrusters Drive motors

STDE VIEW

Figure 1: NPS AUVII General Schematic

Internal computer hardware consists of a GESPAC MPU 20 HF processor with a

Motorola 68020 CPU, a 68881 math coprocessor, and a 2.5 Mb RAM card running at 16

7

MHz. Input/output between the CPU and analog control systems is through two GESDAC-

2B 8-channel 12 bit digital-to-analog/analog-to-digital converter cards and a GESPIA-3A

parallel interface board. Programs are loaded from a GRIDCASE 386 laptop computer via

a serial connection to a 2400 bps modem. Post-mission data is downloaded through the

same system.[Ref. 6]

Four Datasonics PSA-900 Programmable Sonar Altimeters are orthogonally

fixed in the nose of the NPS AUV and are oriented forward, down, left and right. These

transducers are fixed frequency and ultrasonic at approximately 200 KHz. The sonar range

gate is selectable at 30 m or 300 m, and pulse length is 350 ps. Normal pulse repetition rate

is 10Hz. Sonar beamwidth is seven degrees and range resolution is 1 cm at 30 m.[Ref. 7]

Because of its high frequency resolution, this sonar is well suited as an obstacle avoidance

sonar. It is not a particularly good object detection sonar because of its narrow beamwidth.

2. NPS AUV II Software Characteristics

a. Mission Execution Systems

The NPS AUV II mission execution software design and functions as

presented in [Ref. 5] are shown in Figure 2.

(1) Mission Planner/Replanner System Module. This system was originally

designed by S. Kwak and S. Ong using a KEE expert system shell [Ref. 8]. It is currently

run off-line on a stand alone Symbolics 3675 Lisp Machine. The Mission Planner takes

mission inputs from the human operator. It then decides which planning algorithm to

execute depending on its internal knowledge base. In a minefield search mission, the

Mission Planner would choose an algorithm similar to the minefield search algorithm

presented in this thesis. Real-time updates from the Environmental Model Data Base,

Obstacle Avoidance Decision Maker and Vehicle Condition Monitoring Sensors would

modify the conduct of the mission execution as dictated by the Mission Replanner. The

minefield search algorithm proposed in this thesis would reside inside the Execute Mission

module.

8

E omn ion Mission
irModel DaM Planner

Base Executor Replanner
Incremental System
Maneuvers

Geo/ras Wpis Dt

Patter Obstacle GuidancePattern Avoidance -'."'-lSystem [10 Hz]
Recognition Dcso xyzt

Maker
..................... i H dg C m d, Spd C m d,

Dept Cmd, Spd Cmd

Navigation 2 A M oE ionSystemsSyt m
(x ,y'z)

====]] [= = Vehicle I V e h ic l e

Sars Speed, Grs SystemsCodtn
Det Accels Monitoring

DepthSystems

Figure 2: NPS AUVII Mission Execution Diagram

(2) Mission Executor Module. Under most circumstances, a series of

waypoints which make up the mission execution plan [W1,..., Wj] would be sent from

the Mission Planner/Replanner to the Mission Executor. The Mission Executor would feed

these waypoints to the Guidance System as required to carry out the mission. In the

proposed minefield search algorithm the Mission Executor serves to relay only the current

and the next waypoint positions (WiWi+ 1) to the Guidance System. Thus this module

would be essentially unused.

(3) Guidance System Module. This module combines commands for the

path and position to be followed or tracked [x (t), y (t), z (t) ,l, and other attitudinal

9

requirements with navigational estimates of true position [I (t , y (t),2 (t) I and orientation

to generate heading, speed and depth commands to the autopilot. A kinematic Euler method

algorithm for computing vehicle changes in position and posture ([x,y, z, , W])I is

presented in Chapter V. This model serves as the "black box" guidance system for graphic

simulation mission playback purposes.

(4) Pattern Recognition Module. This module receives raw sonar data,

processes the data to classify objects and sends object classification data to the

Environmental Model Data Base as well as to the Obstacle Avoidance Decision Maker. The

sonar analysis expert system described in Chapter VI resides in this module.

(5) Other Modules. The Autopilot System is responsible for controlling the

vehicle's dynamics to carry out commands sent from the Guidance System. Vehicle (and

ancillary) Systems provide a variety of vehicle related inputs to Navigation, Autopilot and

Mission Replanner Systems. Positional estimates are provided by the Navigation System

module as (x,y, z) coordinates. The Obstacle Avoidance Decision Maker module analyzes

information from the Pattern Recognition module to determine if vehicle guidance action

is needed to avoid obstacles or to react in other ways as determined by the Mission Planner/

Replanner. Finally, the Environmental Model Data Base stores a priori environmental data

as well as data obtained during the conduct of the mission.

b. Dataflow Diagram

The NPS AUV II data flow diagram as describe by C. A. Floyd [Ref. 6] is

provided in Figure 3. This diagram provides further enhancement of the Mission Execution

Systems diagram described above and along with the data dictionary is the blueprint for

AUV software design.

1. Note that * corresponds to vehicle roll, 0 to elevation, and 4 to azimuth.

10

rA

cnW dR W <ur ;; >Wcnx i. wc Z§
w

UzW W .4 'Z
w U< z

z 60
0 RUcn

-,Zz
<o.J6; .2

>

nu
w 00

0
J zU 0z rA Z0 9Q 0

V) Rtw3U
<<

Z 0
0

<JU

0
Figure 3: NPS AUV 11 Dataflow Diagram

3. NPS AUV II Graphic Simulators

The original NPS AUV non-graphic simulator was designed by R. J. Boncal with

3D modifications using dynamics from the U.S. Navy's Swimmer's Delivery Vehicle

(SDV) by D. L. MacPherson [Ref. 9][Ref. 10]. NPS AUV-SIM1 was the result of a

graduate graphics project by D. Marco, R. Rogers, and M. Schwartz. It used revised SDV

equations of motion as modified by R. J. Boncal to model NPS AUV I [Ref. 9]. The NPS

AUV-SIM2 modified the original vehicle graphics to reflect the geometry of the current

vehicle, NPS AUV II. A major revision by T. A. Jurewicz encapsulated the AUV as a rigid

body using object oriented programming techniques and modified the equations of motion

and hydrodynamics to reflect the actual AUV vice the modified SDV [Ref. 11]. All of these

simulators responded to control inputs from the mouse pad as opposed to using waypoint

following techniques or mission file playback.

The simulator modifications by C. A. Floyd allowed for post-mission replay of

actual AUV pool-side missions, waypoint following using cubic spiral guidance and

obstacle avoidance and terrain following using sonar data [Ref. 6][Ref. 12].

A spatial tracking guidance scheme developed by Y. Kanayama was implemented

in the NPS AUV II simulator by C. Magrino [Ref. 13]. Spatial tracking provides for a

smooth return to a path defined by two waypoints. This algorithm is especially useful for

maintaining acoustic search path continuity.

The latest graphic simulator, built by D. P. Brutzman, is currently under

development. It is an integrated simulator in that it allows AUV mission execution code to

be run on a twin AUV computer system which is maintained in the laboratory. This

integrated graphic simulator will allow pre-mission evaluation of code and graphic

simulator playback prior to the vehicle entering the water. The simulator does not currently

have an imbedded guidance system for computing vehicle motion. Rather, it relies on a file

of vehicle posture inputs which have beer computed by some external module. Therefore,

one aspect of this thesis addressed in Chapter V is the development of a "black box" which

can take waypoint data generated by the minefield search algorithm, produce a continuous

12

vehicle path between these waypoints, and send the resulting vehicle postures to the

integrated graphic simulator for display. [Ref. 14]

B. RELATED AUV RESEARCH

There is currently a tremendous amount of AUV research being conducted throughout

the world. Although each of these projects has aspects which are pertinent to the NPS AUV

program, the research being done at the Defense Advanced Research Projects Agency

(DARPA) represents the vanguard in minefield search technology. Aspects of this program

dealing with mission pre-planning, on-board planning decision and optimization, and scene

recognition are directly addressed in this thesis. The other studies discussed in this section

center on search algorithms which may be used in the conduct of a minefield search.

In 1986, DARPA was tasked by the President's Blue Ribbon Commission on Defense

Management to investigate prototype programs not emphasized by the services. As part of

this investigation, DARPA analyzed each of the U.S. Navy's operational capabilities. It

was determined that there existed an important need to research the feasibility of using

Unmanned Underwater Vehicles (UUVs) in naval missions. The resulting UUV Master

Plan identified the following missions for further research [Ref. 15]:

- Tactical Acoustic System (TAS)

- Mine Search System (MSS)

- Remote Surveillance System (RSS)

1. Test-Bed UUV

In support of this research, DARPA in conjunction with Charles Stark Draper

Laboratories (CSDL) of Cambridge, Massachusetts has developed a working test-bed

UUV. This vehicle is particularly interesting because of its maximum depth and maximum

speed and endurance. The maximum depth of 1000 to 1500 feet would allow the vehicle to

operate below the sonic layer depth, generally increasing sonar ranges for bottom or deep

water sensor coverage. The vehicle's endurance is 24 hours at 10 knots (maximum speed).

To provide some perspective, this would allow 240 nautical miles of vehicle transit, enough

13

to cover nearly 600 square nautical miles of ocean in an expanding square type search

pattern with 2 nautical mile track spacing.

2. Mine Search System Program

The MSS development contract was awarded to Lockheed Missiles and Space,

Co. in January 1990. This program focuses on the UUV's ability to guide submarines or

surface ships through minefields in a semi-autonomous mode (fiber-optic communication

link or acoustic data link) or independently search a minefield in an autonomous mode.

3. Autonomous Minehunting Technology (AMT) Program

This project at CSDL is an important part of the MSS effort. The AMT program

goal is to "Develop and demonstrate the enabling technologies for autonomously detecting,

localizing, and classifying sea mines (through):

- signal extraction and image recognition,

- data fusion and mission management, and

- ultra-high resolution sensing." [Ref. 16]

Critical to these subgoals is the state of sonar technology. Many important sonar

projects are underway at CSDL which may dramatically affect the quality of sonars to be

carried by AUVs. Of particular interest is the use of the "mechanical hydrophone." This

project exploits semiconductor fabrication technology to mass produce hydrophones

smaller than the head of a pin. Hundreds of these chips could be formed into an array and

placed on the body of the AUV or towed on a cable. This would allow the vehicle to analyze

its environment in a full spherical fashion, eliminating gaps formed by many of todays

sonars.[Ref. 171

This thesis directly addresses several aspects of the MSS and AMT programs. It

proposes a sensor-interactive mission planner algorithm to augment the MSS requirements

for autonomous exploration of a minefield. It directly addresses AMT requirements for

14

signal extraction, image recognition and data fusion by proposing and developing an expert

system for autonomous sonar classification.

C. RELATED SEARCH ALGORITHM CONSIDERATIONS

1. Spatial Representation

According to G. Dudek, et al., the past work on spatial representations for robotic

exploration can be broadly classified into three categories, metric, probabilistic, and graph-

based [Ref. 18]. It was the consideration of the applicability and past implementations of

these models which led to this author's choice of graph-based representation for the

minefield search algorithm.

a. Metric Representations

This category uses a metric representation of space where the features are

explicitly associated with Cartesian coordinates. The purpose of the metric representation

is to enable the robot to plan and execute navigation paths with minimal dependance on

external sensors. While these graphs can be used for navigation, it is unclear how to

represent sensor coverage in such a way as to ensure that the entire area is searched.

b. Probabilistic Representations

Probability distributions associated with spatial coordinates are used to

explicitly represent and manipulate spatial uncertainty. Probabilities of the vehicle being at

a certain location are based on available sensor inputs. These concepts are used to

determine not only a robot's location but also the probable path of least resistance to goal

locations.

c. Graph-based Representations

This method uses topological models for representing space and approaches

map learning as a graph theoretic problem. The work of G. Dudek, et al., has centered on a

graph-based method which eliminates the need for a topological model, assuming that by

searching all accessible space the vehicle will form its own world map. Vertices represent

15

significant navigational events while undirected edges represent the paths between these

events. This work assumes that it is not only important that every graph vertex be visited

but also that the way in which the vertices are connected must be determined. Markers are

used to indicate which vertices have been visited. The algorithm assumes that the vehicle

has no inertial guidance, nor a compass, nor any other mechanism for determining absolute

orientation. Therefore it is unable to distinguish one edge leaving a vertex from another by

standard navigational means. The vehicle must, therefore, also be able to determine the

relative order of the edges leaving a particular vertex. Thus, edges must also be labeled.

While this work is important for vehicles with limited navigational capabilities, it is

unnecessarily sophisticated for vehicles like the envisioned AUV which will have a capable

navigational suite.[Ref. 18]

The graph-based representation idea does allow all of the variables associated

with the minefield search problem to be treated in discrete terms with the exception of

actual vehicle motion which must be handled with a near-continuous algorithm presented

in Chapter V.

2. Vertex Based vs. Edge Based

Whether to use a vertex or an edge based logic in the minefield search algorithm

was a critical consideration in this thesis.

Vertex based search routines are normally chosen when the importance of

arriving at a specific vertex is more important than maintaining a route between vertices.

Hamiltonian path planning methods would generally be employed in these instances.

Generally, edge based search routines are chosen because of the importance of the

vehicle following the edge as opposed to simply reaching the vertices. Edges may be

directed or undirected. Generally in the open ocean environment edges will be undirected.

Eulerian path planning methods are normally employed in order to ensure that the required

edges are transited.[Ref. 19] These methods seem very applicable when conducting area

searches with long, parallel tracks (see Figure 5). Problems arise, however, when

16

unexpected ob-stacles are encountered. It is for this reason that the minefield-search

algorithm described in Chapter IV is vertex based.

3. Search and Path Planning Approaches

It is significant to note that while there are a vast number of search and path

planning strategies delineated in the literature, limited research has been dedicated to

mapping or searching an entire area. This thesis proposes a three-tiered search strategy and

path planning approach, shown in Figure 4, for conducting the minefield search. While it

High-Level
Search Strategy
(Meet Mission Goals)

Start Position
Goal Position

Intermediate-Level
Override Path Planning
Control Strategy

(Optimal paths)

Low-Level
Path Planning
(Obstacle Avoidance)

Figure 4: Three-Tiered Search and Path Planning Approach

is possible to search an entire area using a random technique, the lack of efficiency makes

this method prohibitive. It is therefore desirable to use a high-level search strategy which

ensures that mission goals are met in an efficient manner under most foreseen

circumstances. Because of the need of the vehicle to maneuver around obstacles to reach

the next goal there must also be an intermediate-level path planning strategy designed to

maneuver the vehicle around these obstacles in an efficient manner. Once these maneuvers

17

are completed the vehicle must then return to the high-level strategy. Both the high-level

and intermediate-level strategies are handled in module 1 (Plan/Replan Mission) and/or

module 2 (Execute Mission) in the AUV II dataflow diagram in Figure 3. A minefield

search algorithm integrating these two levels is proposed in Chapter IV. The low-level path

planning involves maneuvering of the vehicle in close proximity to unforeseen obstacles to

avoid collision. The functions of this level are handled between modules 8 (Avoid

Obstacles) and 2 (Execute Mission) in the dataflow diagram and are not addressed in detail

in this thesis.

a. High-Level Search Strategies

The choice of a high-level search strategy is very mission dependent. There

is a basic theme however which requires that the overall probability of detecting the target

or targets of interest is maximized while minimizing the utilization costs of precious assets.

Three examples in Figure 5 illustrate this point[Ref. 20].

Expanding Trackline Ladder

Figure 5: Search Pattern Examples

(1) Expanding Square Search. This search strategy begins at a location

which is at the highest area of probability for detecting the targets of interest which

generally have unknown courses. It is then expanded outward in all directions. It has the

benefit of gaining contact on the targets in the earliest time possible given accurate location

18

intelligence. This type of search strategy may be applicable in some minefield search

scenarios where it is necessary to clear mines from a datum.

(2) Trackline Search. This search strategy is only used when the intended

track of the target is known. It may be employed to guide a ship or submarine through a

minefield but it is generally not usable for minefield search missions.

(3) Parallel Track (Ladder) Search. This search strategy is generally

employed when the search area is large, when the targets have only an approximate location

accompanied by a predicted course, when uniform area coverage is desired, or any

combination of the above. This search strategy and numerous variations lend themselves

well to larger area minefield searches and will be addressed in detail.

Generally, high-level search strategies will be divided into a sequence of

intermediate goals which normally correspond to locations where a pre-planned vehicle

course change is required.

b. Intermediate-Level Path Planning Strategies

Once an intermediate goal is determined by the high-level search strategy, the

vehicle must determine the best path to reach this goal. This is a straight forward task in an

obstacle free environment but requires a clever algorithm to be efficient when obstacles are

present. There is an abundance of search strategies which may be used at the intermediate

level for planning a path from a starting point, around obstacles to the intermediate goal.

The most commonly used are addressed below. [Ref. 21]

(1) Depth-First Search (DFS). In the DFS strategy, a start state is visited

followed by a successor state which is chosen by a predefined heuristic. A successor state

to the successor state is visited and so on until a state with no successors is reached. The

search vehicle is then backed out to a previously visited state which has an unvisited

successor. This pattern continues until all states have been visited. The DFS does not

require an agenda of states to be visited nor any cost related functions.

19

Advantages:

- Easy to implement

Disadvantages:

- Not guaranteed to find goal

- Inefficiencies in backtracking lead to slow execution in hard problems

(2) Breadth-first Search (BFS). The BFS has a start state from which it visits

all immediate successors according to some heuristic order. The successors of each of these

states are then visited and so on until the goal is found. This search requires an agenda of

successors to be visited but does not require any cost related functions.

Advantages:

- Easy to implement

- Not subject to endless loops

- Guaranteed to find goal state if reachable

- First path found to goal state is shortest in terms of layers

Disadvantages:

- Slow execution in hard problems

- Requires extra storage in the form of an agenda

- Minimizes numbers of layers traversed not the total distance

(3) A-star Search. This agenda-based search strategy uses both a cost

function and an evaluation function. For a route planning problem such as the one presented

in this thesis, the cost is likely to be the cumulative distance traversed from the start state

to the state being evaluated. The evaluation function is likely to be the straight-line distance

from the state of interest to the goal state.

20

Advantages:

- Guaranteed to find the lowest-cost (Optimal) path2

- Efficient for complex problems

Disadvantages:

- More complex to implement

- Requires longer computational time

(4) Hill-climbing Search. This is the evaluation-function variant of the DFS.

It has the advantage over DFS of generally reaching the goal sooner.

(5) Best-first Search. This is the evaluation-function, agenda based version

of the BFS. It picks the best-evaluation state of those anywhere in the search graph whose

successors have not yet been found, not just a state at the same level as the last state. Its

advantage over BFS is that it tends to reach the goal sooner under most circumstances.

While this list is not all-inclusive, it does provide the major concepts and

considerations when choosing an intermediate-,:vel search strategy.

2. E. Hart, et al. provide an extensive proof that the A-star algorithm is guaranteed
to find an optimal path from start to goal given a proper evaluation function [Ref.
22].

21

HI. MINEFIELD SEARCH PROBLEM CONSIDERATIONS

There are many missions of both offensive and defensive natures which are performed

in mine warfare. Likewise, there are many corresponding mine-countermeasure missions.

This section outlines the primary mine-countermeasure missions in which the AUV can be

expected to participate.

The mine-countermeasure mission defines the target sought, the environment operated

in and the equipment required. Each of these categories must be considered when

developing minefield search problem solutions. These categories are also discussed in this

section along with navigational considerations which are a combination of both

environment and equipment considerations.

A. THE MISSION

It can be expected that the military will be the predominant user of an AUV mine-

countermeasure weapon whether in support of military operations or "right-to-passage"

civilian shipping. The following naval warfare missions define the parameters in which

such an AUV would be expected to operate.

1. Battle Group Support

Most battle group missions can be expected to be carried out in deep-ocean areas

where the likelihood of encountering a significant mine warfare threat is small. There are,

however, a large number of cases where battle group missions are carried out in more high-

threat mine warfare areas. The most recent example is in the 1990-1991 "Gulf War" where

significant United Nations Coalition battle group assets conducted operations in the Red

Sea, the North Arabian Sea, and the Persian Gulf. Each of these bodies of water are ideally

suited for mine warfare operations. Additionally, the battle group was especially vulnerable

while transiting to and from these areas through the very narrow and shallow Suez Canal,

the Bab el Mandeb Straits and the Straits of Hormuz.

22

2. Amphibious Operations Support

Amphibious missions generally begin in moderately deep ocean staging areas

where large amphibious ships launch their landing craft. These landing craft transit through

shallow water areas, into the surf zone and finally ashore. Mine warfare is particularly

effective in deterring these types of missions because control of both the waters leading into

the beach head and the skies overhead is generally of a tentative nature due to the proximity

to the enemy. It is for this reason that conventional mine-countermeasure weapons are often

unable to freely search these areas. Additionally, many navigation hazards can be expected

including both unplotted natural hazards as well as enemy built hazards.

3. Submarine Force Support

Like the battle group, submarines are also extremely vulnerable to mine warfare

while transiting narrow and shallow bodies of water. Because the submarine depends upon

remaining undetected for survival, its inability to overtly conduct mine-countermeasure

operations is a severe handicap. It would be an exceptional advantage to be able to launch

and recover a mine-hunting AUV from the torpedo tubes of a submerged submarine. This

would allow the submarine to remain covert while surveying safe routes through potential

minefields. A scene from a graphic simulation program depicting such operations is shown

in Figure 6.[Ref. 23)

4. Harbor Patrol Support

AUVs may also be used for defensive harbor patrol operations. This environment

is typically dense with both man-made and natural obstacles. Effective path planning and

obstacle avoidance will be particularly important in this mission.

In summary, an AUV can be expected to support any of these missions. It must be able

to flexibly operate under a variety of circumstances. It must be able to search moderately

deep bodies of water as well as very shallow or even surf zone areas. It must be able to

search narrow, restricted maneuvering areas as well as large, open bodies of water. It must

search familiar as well as unfamiliar areas with the possibility of encountering

23

Figure 6: Graphic Simulation of Submarine Launched AUV

geometrically complex obstacles and even "blind alleys" 1 through which it must maneuver.

It must also be able to return a usable "map" of what it has observed to its parent platform.

B. TARGET CHARACTERISTICS

There are two perspectives from which to view the "target of interest" for AUV mine-

countermeasure missions. The first perspective views the mine as the target. This generally

focuses on the sonar detection and identification of the mine. The autonomous sonar

classification expert system addresses the identification aspect of this issue. The second

perspective views the effective coverage and mapping of an area as the target. This

1. A blind alley is a horizontally oriented object which is open in the center.

24

approach assumes that determining areas as either free or hazardous is the primary goal and

that specific mine identification can be handled within a different logic module. These are

primary concerns in the minefield search algorithm.

There are many ways to categorize mine types: offensive or defensive; bottom,

moored or floating; contact or influence; method of delivery; etc.[Ref. 2] The research in

this thesis is predominantly concerned with the physical characteristics of the mine for

identification considerations and the location of the mine for search considerations.

Table A highlights features of selected U.S. underwater mines [Ref. 2].2

TABLE A: SELECTED U.S. UNDERWATER MINES

Mine Type Max. Depth Length Diameter

Mk 52 ASW Bottom 600 ft. 5 ft. 1 in. 2 ft. 9 in.

Mk 55 ASW Bottom 600 ft. 6 ft. 7 in. 23.4 in.

Mk 56 ASW Moored 0-1200 ft. 9 ft. 5 in. 23.4 in.

Mk 57 ASW Moored 1148 ft. 10 ft. 8 in. 21 in.

Mk 36 Bottom 300 ft. 7 ft. 5 in. 15 in.

Mk 40 Bottom 300 ft. 9 ft. 9 in. 22.5 in.

Mk 41 Bottom 300 ft. 12 ft. 5 in. 25 in.

Mk 60 ASW Captor 3000 ft. 12 ft. 1 in. 21 in.

Mk 62 Bottom 300 ft. 7 ft. 5 in. 10.8 in.

Mk 63 Bottom 300 ft. 9 ft. 5 in. 14 in.

Mk 64 Bottom 300 ft. 12 ft. 8 in. 18 in.

Mk 65 Bottom 300 ft. 9 ft. 2 in. 29 in.

Mk 67 SLMM 328 ft. 13 ft. 5 in. 21 in.

2. Captor (Encapsulated Torpedo) is laid in deep water by aircraft or submarine. Upon submarine
detection, launches encapsulated Mk 46 acoustic homing torpedo.
Submarine-Launched Mobile Mine (SLMM) is a self-propelled torpedo-like mine which permits co-
vert mining by submarines. It is also a shallow-water bottom mine for use against surface ships.

25

These weapons typify the types of mines used by the more advanced military industrial

countries. Third-world countries typically use mines of the WWI or WWII vintage but are

increasingly employing more modem and sophisticated mines.Table B gives two typical

mines employed in Middle East conflicts in recent years.

TABLE B: SELECTED MIDDLE EAST UNDERWATER MINES

Mine Type Max. Depth Length Diameter

M 08 Moored 110 m. - 1.5 m. - 1.5 m.

Sigeel/400 Bottom - - 0.9 m. - 0.9 m.

Since most mines do not emit appreciable noise they are generally detected through

active acoustic means. It is the difference in material density between the water and the

components of the mine which cause active sonar pulses to reflect back to the sonar

receiver. The size of the mine has a direct relationship to its detectability and can also be

used as a numerical identification characteristic. While there are a few examples of

exceptionally large mines and particularly small mines, most mines have between 10 sq. ft.

and 40 sq. ft. of cross-sectional area.

C. ENVIRONMIENT CONSIDERATIONS

The environment in which the minefield is placed is an important determinant of how

to best employ an AUV mine-countermeasure weapon. The environment can be defined as

a function of geographic characteristics and ocean acoustic properties.

1. Search Area Characteristics

The characteristics of typical minefield locations define the environment in which

an AUV mine-countermeasure weapon must operate.

a. Shallow and Deep Water

Although mine fields can be placed in deeper ocean areas, they are generally

placed in shallow and restricted navigational waters. Weapons of this nature are usually

26

more effectively used in "choke point" type operations where the enemy vessel must transit

through a narrow channel to reach its destination. Because choke points are normally

relatively shallow and because mines are more effective when exploded in close proximity

to their target, most mines are made to operate in relatively shallow water areas. Table A

and Table B indicate selected mine operating depths. The approximate dimensions of

selected areas where minefields could be expected to be deployed in selected times of crisis

are depicted in Table C.[Ref. 25]3 In each of these bodies of water the depth is far less than

TABLE C: SELECTED GEOGRAPHIC AREAS FOR MINEFIELD
OPERATIONS

Area Name Expected Type Length Least Width Least Depth
of Minefield

Straits of Bab ASW/ASUW 42 nm 9 nm 45 m

el Mandeb

Suez Canal ASUW 86 nm 290 m 19 m

Straits of ASW/ASUW 33 nm 8 nm 50 m
Gibraltar

Straits of Mal- ASW/ASUW 520 nm 8 nm 26 m
acca

Straits of ASW/ASUW 20 nm 18 nm 20 m
Dover

the range capabilities of most active sonars expected to be deployed aboard AUVs. This

would allow the minefield search problem to be reduced to a two-dimensional search

algorithm.

Another area where extensive ASW mine warfare operations may be

conducted in the case of a major conflict with Russia is in the GIUK Gap4 in the North

Atlantic. Here, water depths average about 1800 meters and the gap is about 100 nautical

miles wide to the northwest and about 450 nautical miles wide to the southeast of Iceland.

3. ASW equates to Antisubmarine Warfare and ASUW equates to Anti-Surface Unit Warfare.
4. GIUK equates to Greenland, Iceland, and the United Kingdom.

27

At these depths, the AUV would most likely need to conduct three-dimensional searches

given sonar range limitations and deep acoustic sound channel effects. Figure 7 provides a

vertical comparison of AUV sonar coverage in the Straits of Bab el Mandeb and the GIUK

Gap given an 300 meter sonar range gate. 5 It is apparent that a two-dimensional search

algorithm will handle most minefield requirements but that a three-dimensional search

algorithm would add deep water search flexibility.

AUV with 300 m. sonar range

45 m.. Bab el Mandeb

GIUK Gap

1800 m.

Figure 7: GIUK Gap vs. Straits of Bab el Mandeb Depth Comparison with 300 m.

b. Bottom Topography

The effect of bottom topography on the AUV mine-countermeasure mission

will vary depending upon the operating area and target sought. Generally, the bottom

topography affects two important mission aspects, AUV navigation and target detection.

While it is important for the AUV to be able to maneuver in close proximity

to the ocean bottom, close aboard bottom contour following is not critical for the general

conduct of the minefield search mission. As depicted in Figure 8, the AUV may use its

sonars to determine whether or not adjacent vertices (hereafter referred to as nodes) are

5. NPS AUV II has 30 meter and a 300 meter range gates.

28

available. It may then base its choice of paths upon this availability. Should an attainable

node be too close to the bottom for safe vehicle maneuvering, the Obstacle Avoidance

module (see Figure 3) could provide override control.

Sonar ZneoflIn enc

..

J %

.. . o. " ,%

. . .

Fi 8: V i D o h Navigation ConsideratBotto.... t r also t A s a. Fodfcutt . t f... o b fetue A so ft, e rlt .b oh e

• .j..... :
" /"X "- " "...........':

:~ ~ ~ ~ ~ ~~~~~~~~~~~..'' ..." "....":: ::':'-':"":"": "

hand will not interfere with active sonar returns off of the mine.

2. Acoustic Sensor Considerations

a. Passive Acoustic Sensor Considerations

While mines with electronic detection devices do emit noise into the

surrounding environment it is of such a small magnitude that it is virtually undetectable

against background noise. Passive acoustic sonars are therefore not a primary mine

detection tool.

29

b. Active Acoustic Sensor Considerations

Active sonar is the primary mine detection sensor because it does not rely on

target noise emissions. Rather, active sonars emit their own sound wave which reflects off

of the target and returns to the sonar receiver. By knowing temperature, pressure and

salinity of the water medium a sound velocity is computed. This velocity is applied to the

time the sonar pulse takes to travel to and from the target and yields the distance. This,

coupled with the direction and beamwidth of the sonar pulse provides the x,y,z location of

the target.

c. Sonic Layer and Sound Channel Effects

Both active and passive acoustic sound ray paths are affected by changes in

the sound velocity of the water. Near the ocean surface, relatively abrupt changes in the

sound velocity causes what is known as a sonic layer. Acoustic sound rays traversing this

layer bend, creating "shadow zones" and often reducing sonar ranges.

A sound channel is formed when sound is trapped between two mediums.

These surrounding mediums can consist of the ocean surface or ocean bottom in

conjunction with a changing sound velocity, or sound velocity inversions. The effect is the

"trapping" of sound rays, causing extended ranges within the sound channel but shorter

ranges and shadow zones outside of the channel.

The existence of these anomalies affects the decision on where to place the

AUV for conducting its search. A three-dimensional search algorithm will automatically

take care of putting the AUV in the different mediums. The two-dimensional algorithm,

however, may leave the areas on the opposite side of the layer or channel from the vehicle

inadequately searched. This could be overcome with either the three-dimensional search

algorithm or by extending the two-dimensional algorithm into a "two-and-one-half

dimensional" search algorithm. This would require that the AUV first search on one side

of the layer or channel and then search the other side.

30

D. AUV EQUIPMENT AND PERFORMANCE CONSIDERATIONS

While most AUVs are severely limited in their current ability to effectively conduct

minefield searches, changes in AUV related research are advancing so rapidly that a

capable vehicle will likely be available in the very near future. The current state or expected

state of the following equipment is an important input into determining how to conduct the

minefield search.

1. Depth, Speed and Endurance

a. Depth

This should not normally be a limiting factor for minefield searches since

even the deepest mines such as the Mk 60 Captor can be found in only about 370 meters

water depth and current vehicles such as DARPA's UUV can dive to about 450 meters.

b. Speed

This is an important factor since it, along wih endurance and sensor

performance, determines how much area an AUV can search in a given time period. Most

AUV's are currently limited to speeds of under 10 knots. This restriction severely restricts

the vehicle's ability to search larger areas in a timely manner. By adding the third

dimension to a search algorithm the size of the area to be searched is increased

dramatically. Therefore, most large area search applications will likely be limited to two

dimensions. Another important concern is the effect of speed on the performance of sonars.

At the low speeds generally associated with today's AUV's there is little "flow" noise

effect on high frequency sonars [Ref. 261. As AUV speed performance improves, however,

this may become another limiting factor in the minefield search.

c. Endurance

This is another important limiting factor in conducting large area searches.

Even the DARPA UUV, which has the longest endurance of all AUV's surveyed, has only

31

24 hours endurance. As in the case of speed limitations, endurance limitations limit the

vehicle's ability to conduct large area searches particularly in three dimensions.

2. Sonars

While AUV speed and endurance limit the capabilities of the AUV in large area

searches, advancements in sonar technology are dramatically increasing these vehicles'

ability to look further with greater definition. The following advancements in sonar

technology are important considerations when designing minefield search routines and

sonar classification expert systems.[Ref. 26]6

a. Side-Scan Sonars

This relatively new sonar is the most commonly used for small object

detection, location, and classification. It is most effectively used against targets lying on or

near the bottom. These sonars typically have maximum detection ranges of under 600

meters although some like the Sea Mark I have ranges out to 2500 meters. Generally, side

scan sonars operate at an altitude of 10 to 20 percent of their maximum detection range

above the bottom. A typical side-scan sonar profile appears in Figure 9. It is important to

note that sonar coverage is generally abeam of and below the AUV and that little obstacle

avoidance sensing is provided.

b. Obstacle-A voidance Sonars

These high frequency sonars are typically used for obstacle detection and

avoidance including terrain avoidance. Included in this category are the sonars currently

installed on the NPS AUV II.

E. NAVIGATION CONSIDERATIONS

Precise AUV positional information is critical in the minefield search problem. It is

necessary for both getting the vehicle where it is supposed to be and for returning mine and

6. [Ref. 26] provides excellent descriptions of side-scan, forward-looking and down-looking so-

nars.

32

Figure 9: Side-Scan Sonar Profile

other obstacle positional information to the parent ship. Inertial navigation positional

information is highly accurate over short durations but degrades in proportion to the time

between navigational fixes. Global Positioning System (GPS) holds the most promise for

providing highly accurate fixing data. Current non-military systems are capable of fixing

the AUV's position to 100 meters in real time and down to 2 meters using differential post

processing. Military systems are even more capable.[Ref. 27]

Another means of fixing the AUV's position is through bottom topography. Bottom

contour following is a navigational method practiced by both ships and submarines. It is

also possible in AUV's. Another means would be for the AUV to fix its position using

known bottom features. These features could be extracted using an expert system similar

to that proposed in Chapter VI.

33

IV. MINEFIELD SEARCH PROBLEM SOLUTION

A. MINEFIELD SEARCH PHILOSOPHY

Traditional robot searches use algorithms based on variations of search routines

involving a start, a goal, and obstacles which obstruct the vehicle's path. The minefield

search also has a start point and obstacles but it differs considerably in its high level goal.

In the minefield search algorithm, the goal is the complete coverage of the minefield with

the vehicle's sensors (reflected in the high-level tier of Figure 4). This means that the

vehicle must have some method of determining which parts of the search area have been

adequately searched and which have not. The vehicle must be able to efficiently maneuver

to those areas yet to be searched (intermediate-level tier of Figure 4). Also, the vehicle is

likely to complete its mission in different locations depending on the type of obstacle

patterns it encounters. It is apparent that the typical start to goal type search routines are

unsatisfactory for providing a solution on the highest level of a search of this type.

This chapter presents an original minefield search algorithm which guides the vehicle

in thoroughly and systematically searching unknown terrain. It is pure in nature in that

previous knowledge of the search area is not required. It follows the general area search

hierarchy presented in Figure 4 in its philosophy and takes advantage of the efficiencies

associated with the more traditional search algorithms in completing its goal. Both the two-

dimensional and three-dimensional algorithm versions are discussed.

B. MINEFIELD WORLD REPRESENTATION

_. A priori World Knowledge

According to Chappell, "A critical component of the guiding intelligence of an

autonomous vehicle is the system's computational model of its physical environment. An

autonomous entity wi no model of its environment is severely limited." [Ref. 24] While

this may be true for 2hicles maneuvering in very close proximity to a dense field of

34

obstacles it is not a requirement for vehicles which maintain significant safe-standoff

ranges. A significant characteristic of the minefield search algorithm is that it does not

require such a detailed a priori map of the world. Rather, it only requires definition of the

search area boundaries and the spacing between nodes.

2. Search Area Shape

An important consideration for the data structure of the world is the shape of the

search area. Large, open-ocean search areas could best be defined with two or three-

dimensional, rectangular shaped boundaries. This is because there are no large obstacles to

obscure parts of the search area. This choice may not do well for odd-shaped choke points

or for areas with large variations in bottom topography. These types of areas may best be

defined by a more flexible structure which more efficiently defines the boundaries of the

vehicle's search area. Figure 10 shows such contrasting search areas. These arguments

Search Area

Serch Area

Water Water

Open-Ocean Search Area Restricted Channel Search Area

Figure 10: Contrasting Open-Ocean and Restricted Channel Search Areas

would hold true if a priori world knowledge were essential for vehicle navigation. It would

also be important if the AUV's computer memory was so small that storing a structure

which included areas known to be unattainable would push memory capacity limits. The

35

minefield search presented here assumes that the additional memory required to store such

unattainable areas is so small as to be insignificant. It also eliminates the need for providing

precise a priori boundary definitions including bottom topographical boundaries because

it effectively excludes inaccessible areas within the algorithm. Therefore, the search area

may be defined in a very generic manner as in Figure 11.

Restricted Generic
Search Area Search Area

Water

Figure 11: Generic Search Area Dimensions

3. Graph Representation of the World

a. Fundamental Graph Structure

The graph-based representation method was chosen as the structure for the

minefield search world model. Within this representation, the world is fundamentally

defined by two-dimensional or three-dimensional rectangular graphs shown in Figure 12.

These graphs are locally defined by fully connected adjacent nodes N. The nodes are

defined by the Cartesian coordinates (x,y) in two-dimensions and (x,y,z) in three

dimensions, and are connected by non-directional edges. The distance between nodes and

thus the edge length is determined by either the human operator or by the Mission Planner

in module 1 of the dataflow diagram. This distance will be a function of the sonar's

36

fi

Two-Dimensional Three-Dimensional

Figure 12: Basic Building Blocks for Two and Three-Dimensional Graph
Representation

capability, water temperature, water pressure, water salinity, and the desired probability of

detection (POD).

b. Composite Graph Structure

Both the two and three-dimensional graphs are created by piecing together

the fundamental structures. Figure 13 shows four two-dimensional fundamental graph

structures pieced together. Note that with the AUV placed at the center there are eight

possible adjacent nodes to which the vehicle can travel.

Figure 14 is the result of piecing together four fundamental three-dimensional

structures. With the vehicle placed in the center of the graph, there are 26 possible adjacent

nodes to which the AUV can travel. In the minefield search algorithm, up (U) and down

(D) have been excluded from consideration because of the assumption that this particular

AUV cannot travel vertically. Therefore, this AUV is limited to traveling to 24 adjacent

nodes.

37

NW(-1,1) N(O,1) NE (1,1)

SW(-1,-1) S (0,-1) SE (1,-1)

Figure 13: Two-dimensional model provides eight possible directions to traverse.

An alternate method of visualizing the graph structure is to assume that each

node is located in the center of the squares (two dimensions) or cubes (three dimensions)

which are hereafter referred to as blocks as seen in Figure 15.

4. World Structure

These fundamental structures are pieced together until the entire search area is

covered thus forming the search world structure. Note that number of possible nodes to

which the vehicle can travel is reduced when the AUV is at z world boundary node. 1

5. Sub-World Structure

To complement a high-level search plan G. Dudek, et al., suggests that the world

can be divided into subgraphs or sub-areas and that exploration be confined to these

compact regions until they have been fully searched [Ref. 18]. This concept is very

significant when searching a minefield. If a search algorithm does not use a sub-area

1. This is a node located on the comer, outside edge or face of the world search area.

38

oil UN
UNW UNE

U

SW U

1D

-i - -i0- i - 1-i -1

DSW DS DSE

Figure 14: Three-dimensional model provides 26 directions to traverse.

strategy then it will generally leave many gaps in its search when obstacles are encountered

and may not get back to search these gaps until late in the mission. If the vehicle is unable

to complete its mission then these gaps are left unsearched. Such somewhat spurious gaps

may prevent the parent ship, submarine, battle group or amphibious task force from

advancing into the minefield. On the other hand, if the AUV has the priority to search entire

sub-areas prior to moving on to new sub-areas and these sub-areas are searched in a

39

i10 100 E li

..... ".:.... i ".

% %

... I :, ... i " .

.0 ,

Nodes
Blocks

Figure 15: Alternate Representation of Basic Building Blocks for Graph
Representation

systematic fashion then fewer gaps are left in the search of the minefield. This would allow

the ships to advance safely to the boundaries of the AUV's successful search. This distance

advanced may in many cases be enough for the ships to begin conducting their primary

missions.

a. Two-Dimensional Sub-Area Construction

Figure 16 shows how the two-dimensional minefield search area for this

thesis is subdivided into 49 sub-areas numbered in order of priority, with 81 nodes/blocks

to each subarea for a total of 3,969 nodes/blocks. The number of sub-areas and the number

of nodes/blocks in the x and y directions and the track spacing are defined by global

variables in order to flexibly meet the user's needs. A blow-up from a discrete graphic

simulation mission replay shown in Figure 17 shows how a vehicle using the minefield

search routine with prioritized sub-areas systematically covers every available node/block

in the available sub-areas. In contrast, Figure 18 shows how the vehicle using the same

minefield search routine without prioritized sub-areas leaves coverage gaps.

40

Figure 16: Two-Dimensional Search Area Sub-Divided into Prioritized Sub-Areas

b. Three-Dimensional Sub-Area Construction

The choice of how to organize sub-areas in the three-dimensional world

follows a similar philosophy to that used in the two-dimensional organization. It remains

important that portions of the search area be thoroughly investigated prior to moving on to

other areas. Figure 19 shows how the three-dimensional sub-areas are prioritized. Note that

slices of ocean in the vertical are searched prior to advancing down-track. As in the two-

dimensional program, the number of sub-areas and nodes/blocks in the x, y and z directions

and the track spacing are globally defined for user flexibility. For evaluation purposes, this

thesis uses 75 sub-areas, five in each of the x and y directions and three in the z direction.

Each sub-area consists of five nodes/blocks in both the x and y directions and three in the z

for a total of 5,625 nodes/blocks.

41

AUV

Obstacles

-! !--~~ ~~ --------- ..-...- -, :-i i i i--

/ l '"-.:............. -....i..

(Not .. Visited
Searched) (Searched)

Figure 17: Prioritized Sub-Area Minefield Search

6. World Data Structure

The minefield search world is defined as a two or three-dimensional array of

nodes/blocks. The number of nodes/blocks in the x, y and z directions and the track spacing

are defined by global variables to allow the user to search an area of any desired size.

Each node/block is defined by its x,y,z position, its sub-area number, and its state.

The state of the node/block is an important determinant of the actions available to be taken

on that node/block. There are two varieties of states, primary and secondary. Primary states

are mutually exclusive amongst each other and are used in the high-level minefield search

algorithm, the intermediate-level path planning algorithm and the graphic simulator for

display purposes. Secondary states are not mutually exclusive amongst primary or

secondary and exist only for the purpose of either intermediate-level path planning or

graphic simulator analysis. The possible primary states are defined as follows:

- FREE. This indicates that the block has not been searched by the AUV. This
also means that the corresponding node has not been analyzed or visited by the
AUV.

42

AUV

Obstacles

•~~.
-.. -..-L

..--..-..- ..;.4.. . ..

(Not
Searched .d........

• .i..-.. ~ - . .-....i-

!-- -- .- --.: ..-:- , ---....-.----

(Not ,: Visited

Searched) (e

Figure 18: Non-Prioritized Sub-Area Minefield Search

- OBSTACLE. This state indicates that the node is unattainable from at least one
incoming edge. Therefore, an obstacle is considered to exist at that node.
Obstacle takes on a broad definition in this context. It includes mine, ocean
bottom, sea-mount, ship, or any other obstruction.

- AUV. This state indicates that the AUV has most recently been at this node and
has yet to achieve the next node.

- ACTIVE. An ACTIVE node has been analyzed by the AUV's sonar and

determined to be attainable 2(not OBSTACLE). The corresponding block has
not been thoroughly searched nor has the AUV visited the node/block.

- VISITED. This node has been visited by the AUV and its corresponding block
has been thoroughly searched.

2. An attainable node is not only one which is not obstructed by an obstacle but also one in which
adjacent nodes are not all obstructed by obstacles.

43

61 62 6 4 6
6**,3 1 32 33 34N,3

612 N% 3 4 5

2 3 4 5

:.. :.. :...

....... .9 .he - i e s o a Searc A re r ii e A reas......
The scondry sttes rc AD ACEN and .. T. e t tos

adjacnt ndes bing valuted b theAUV' sona. Th la.er.inicats .tht.t. enode...o
the ~ ~ ~ ~ ~ ~ ~ ~ ~~~~~~~ ~. path th.U'.urntpsto.oit.ola eindb h nereit-ee

path.. plnnn algorithm.

.4 :

C. MINEFIELD SEARCH ASSUMPTIONS

1. Sonar Coverage Assumptions

There are some important sonar coverage assumptions which were used when

developing the minefield search algorithm. First, the virtual AUV has a much more

sophisticated sonar suite than that found on the NPS AUV II. This assumption was

necessary because of the very restricted coverage provided by the NPS AUV II's four

transducers. Rather, the presently fictitious AUV used for this algorithm has the type of

nearly spherical coverage which would be possible on a vehicle using a towed array sonar

or a vehicle covered by the "mechanical hydrophones" discussed earlier.

2. Track Spacing Assumptions

The desired vehicle track spacing 3 is a function of the sonar's capability,

environmental variables, and the desired probability of detection. The minefield search

algorithm bases the track spacing on the vehicle's ability to determine if an adjacent node

is attainable from the AUV's current node. Figure 20 shows an acceptable track spacing

based on sonar range. Note that this choice of spacing ensures that the AUV can use sonar

to analyze all adjacent nodes to determine if they are attainable. This also ensures that the

block in which the AUV is located is searched with a very high POD. It does not, however,

ensure that adjacent blocks are thoroughly searched.

3. AUV Characteristics Assumptions

The first assumption is that the AUV will not be powered and balanced to allow

it to traverse vertically (e.g., N(xn,yn,z n) to either N(x,, yn, Zn+1) or N(xnYn,Zn-l)).

The next assumption is that the AUV's turn radius is small enough in comparison

to the track spacing that it is able to maneuver within close proximity of a node for the

purposes of doing a 1800 reversal of course to exit "blind alleys."

3. Track spacing is defined as the distance between two possible vehicle paths which are parallel
and adjacent.

45

- "Sonar
Node •RangeNode Circle

Block

-

Figure 20: Track spacing requires sonar be able to determine adjacent nodes are
attainable (free of obstacles).

Navigational information is assumed to be perfect.

D. SUMMATION OF MINEFIELD SEARCH REQUIREMENTS

The following requirements dictate the conduct of the minefield search algorithm in

static obstacle fields:

- The AUV must search all attainable blocks in the defined search area.

- The AUV must be able to commence its search from any node not obstructed
by an obstacle.

- The AUV must attempt to optimize the search by ignoring nodes which are
unattainable.

- The AUV must achieve coarse maneuvering around obstacles. 4

- The AUV must handle stove pipe5 and blind alley 6 situations.

4. This includes the ocean surface, the ocean bottom, and other features such as sea-mounts.
5. A stove pipe is a vertically oriented object which is open in the center. It is similar to a stove pipe
found on old wood burning stoves. If there is only one vertical column of nodes through the center
of the stove pipe, then a path through the stove pipe is unattainable.
6. Blind alleys are horizontally oriented stove pipe like objects.

46

E. HIGH-LEVEL MINEFIELD SEARCH ALGORITHM

1. Ladder Search Theme

As stated previously, in the high-level search strategy it is desirable to

systematically and thoroughly search areas of ocean prior to moving on to other areas.

While the sub-areas are searched in a prioritized manner 7 based on the ladder search therm,

the blocks within a sub-area are not prioritized. They 're, however, searched in a similar

systematic fashion.

Within the sub-areas it is desirable to maintain as much of a ladder type search

methodology as possible. In a sub-area free of obstacles, the search would proceed from

block to block exactly as in Figure 21. Problems arise, however, when obstacles are

introduced into the minefield. As can be seen in Figure 22 the vehicle is no longer able to

maintain ladder search integrity and gaps in coverage develop (Figure 17). While it is

impossible to maintain ladder search integrity under these circumstances, heuristics may be

employed which maintain the ladder search theme as much as possible.

-I---- -

--- Sub-area

- -

Blocks t..'
Figure 21: Two-Dimensional Ladder Search Methodology within a Sub-Area

7. Sub-areas are prioritized in decreasing priority with sub-area one being highest priority.

47

l- " - Obstacles

Figure 22: Ladder search coverage falters with introduction of obstacles.

2. AUV Start/End Location

An important feature of the minefield search algorithm is that the starting point

from where the AUV begins its search can be anywhere within the world boundary. 8 The

conduct of the algorithm is independent of this starting position. The AUV will still proceed

to the higher priority sub-areas as they become known to the vehicle.

The end location for the AUV is also variable and depends on the conduct of the

search. If a specific pick-up point w,;re required it could be easily attached to the minefield-

search algorithm as the last point to be visited. The intermediate-level path planning would

then determine an appropriate path to the end point.

3. Data Structure for Tracking Blocks which Need to be Searched

As the AUV passes by adjacent FREE nodes, the states of these nodes are changed

from FREE to ACTIVE. This indicates that each node is attainable and its corresponding

block must be searched. While this information could be kept in the world array, it would

be inefficient since the algorithm would have to scan the entire array to determine which

nodes are ACTIVE and their relative priorities. A much better data structure for keeping

8. It is assumed that the vehicle will be launched at a node within the confines of the world bound-
aries and that the starting node is not obstructed by obstacles.

48

track of this information is the linked list. While a linked list is not quite as efficient as a

heap, it is much more straight forward to implement in this application.

The priority of nodes to be visited is determined on two levels. The highest and

most important level bases its node selection criterion on the priority of the sub-area in

which the ACTIVE node resides. Given more than one ACTIVE node in the same sub-area,

the lower level bases the selection criteria on heuristics to be discussed in a later section.

Selection of ACTIVE nodes for searching based on sub-area priority is a very

straight forward matter and is independent of the AUV's current location. The sub-areas

which have ACTIVE nodes can therefore be kept in a sorted linked list with the highest

priority "active" sub-area at the top of the list.

Selection of ACTIVE nodes for searching based on the lower level heuristics is

AUV position dependent and therefore varies with the vehicle's movements. Thus, a sorted

list of ACTIVE nodes does not serve any productive purpose.

A preferred hybrid of the linked list which accommodates these facts is the list of

lists. This hybrid is implemented in the minefield search to track ACTIVE nodes and is

referred to as the "visit list"(Figure 23). 9

Each active sub-area retains a record in the sorted linked list (referred to as the

"sub-area list") with a pointer to an unsorted linked list of ACTIVE nodes (referred to as

the "node list"). If a node changes its state to ACTIVE the sub-area list is searched for a

match to the node's sub-area. If one does not exist, an active sub-area record is created and

inserted according to its priority. A record for the ACTIVE node is also created and inserted

at the head of the active "node list" corresponding to that sub-area.

If an ACTIVE node in the same sub-area is already listed, the node record is

simply inserted at the head of the list corresponding to the already existing active sub-area

record. As the last ACTIVE node record is removed from a particular node list, the

corresponding sub-area record is also removed.

9. The visit list consists of a sorted active sub-area list pointing to unsorted active node lists.

49

Sub-Area List Node List

Sub-Area Number I '

NodeListPointer [z

NextZonePointer NextNodePointer NextNodePointer

Sub-Area Number 2
x

NodeListPointer Y
NextZonePointer NextNodePointer NULL

Sub-Area Number 6
X

NodeListPointer Y Y

NextZonePointer NextNodePointer NextNodePointer NULL

Sub-Area Number 21

NodeListPointer - Y
NextZonePointer NextNodePointer NULL

NULL

Figure 23: The "Visit List" List of Lists

4. Algorithm Flow

The flow diagram in Figure 24 gives the higher level process for conducting the

minefield search.

a. Analyzing Nodes Adjacent to the AUV

When the AUV is placed at the start node, that node's state is annotated AUV.

The vehicle then searches the block in which it is located and concurrently analyzes its

adjacent nodes. Figure 25 diagrams this procedure. The adjacent nodes can be exhaustively

analyzed in any order. If the node is blocked by an obstacle the node is labeled

OBSTACLE. If a node is not an OBSTACLE, is within the world boundaries, and has the

state FREE, than it is added to the visit list. So long as the visit list is not empty there are

50

Alyze Adjacent
Nodes

Get Priority Node
From Visit List

blocs wichneedto e sarchd. ncethVisit List reunMULalatinbebok

NOT E +MPTY

SAdvaneUUsm Y
I nternedIa to L .Igah

Planning Algorithm

SAnalyze AdjacentI

Nodes

Get Priority Node
1 0

From Visit Lis

Figure 24: Minefield Search using Prioritized Sub-Areas Algorithm

blocks which need to be searched. Once the visit list returns NULL, all attainable blocks

will have been searched and the mission is deemed completed.

b. Determining Priority of Nodes/Blocks to be Visited

After the nodes adjacent to the AUV have been analyzed the priority nodel 0

is retrieved from the visit list (see Figure 26). Because the sub-area list portion of the visit

list is always prioritized, the first record in the sub-area list points to the node list from

10. The priority node equates to the AUV's interim goal to which it conducts its intermediate level
path planning search.

51

Analyze Adjacet
Nodes

YES

Not OSLE

Figure 25: Algorithm to Analyze Adjacent Nodes and Add to Visit List

which the priority node will be chosen. It is necessary to traverse this entire node list,

comparing the selection criteria values of one node to the next. A "best node" pointer

always points to the node which is the current highest priority node.

The primary criterion for selecting the priority node within a sub-area is the

Euclidean distance from the AUV. This criterion was chosen because it favors the four

cardinal points 1' over diagonal points in both the two and three-dimensional searches when

11. The vertical cardinal points are not considered in this three-dimensional search.

52

Get Ptoity Node
From Visi L-st

Access Node Lis.
in ffigttelPty
Zne i Zone List

Figre26 Prorty Node Based onDstneCtrio

Dhntanc From
AUV To NodtT

There are numerous possii liestfratebtencoss onso qa

Node As PriorityNode

One Priority

Node AmongEqual Distnce

Figure 26: Priority Node Based on Distance Criterion
choosing amongst adjacent nodes. This minimizes the number of diagonal traverses which

have a distance ratio of about 1.4: 1.0 in comparison to cardinal traversals. It also helps the

AUV keep to the ladder search theme.

There are numerous possibilities for a tie between closest points of equal

distance. In the two-dimensional search there may be as many as four adjacent nodes which

tie under this criterion. In the three-dimensional search there may be as many as twelve

adjacent nodes. There are even more possibilities for non-adjacent nodes. Therefore a

secondary priority node selection method based on relative node location heuristics was

chosen. If the node being compared to the current best node is of equal distance, relative

53

location heuristics are used to determine which node is actually the best node. The flow

chart in Figure 27 outlines these heuristics. Basically, they favor nodes at the same depth

Dceemine Puiority
Node Among

Prority Node,

BothOn nlyoneAssign Node "hS~

NO

aneu Rd ow m A
AssignYT NodnI Sa e
Z~. Plae A A

As Priorit Node

Ofeqa diN cefomAV

and in the same vertical plane as the AUV. Once all of the nodes in the node list have been

compared the priority node as indicated by the best node pointer is returned.

F. INTERMEDIATE-LEVEL PATH PLANNING ALGORITHM

When a priority node has been determined the AUV is advanced using an

intermediate-level path planning algorithm. The algorithm is initiated whether the priority

node is adjacent to the AUV or many nodes distant. The A-Star algorithm was chosen for

this implementation of the minefield search because it guarantees an optimal path.

54

1. A-Star Theme

The A-Star search is an agenda based path planning algorithm which uses a

combination of a cost function and an evaluation function to determine an optimal path

between a start (AUV's current position) and a goal (priority node). The agenda provides a

pool of nodes with which to compare the cost and evaluation values for determining the

optimal path. Once an optimal path is determined, the AUV performs its transit along the

path to the priority node.

2. Cost and Evaluation Functions and Criteria Value

The cost function is the cumulative distance along the best path from the AUV to

the current reference node referred to as the "principle node" and then to the "neighbor

nodes" of the principle node. The evaluation function is the Euclidean distance measured

from the neighbor nodes directly to the priority node. The criteria value assigned to each

neighbor node is the sum of the cost and the evaluation functions. The lower the criteria

value the more efficient the path. It is essentially a measure of the historical distance needed

to travel to the neighbor node combined with an estimate of the future distance to be

traveled to the priority node. The criteria value provides a reasonable measure for

comparing one possible path to another. The principle node at any given time represents the

algorithm's "best guess" of where the optimal path lies. The algorithm therefore tends to

analyze directly toward the priority node and is thus very efficient in most obstacle

environments.

3. Nodes Available for Analysis

The nodes available to the A-Star search for path analysis consist only of those

with the state VISITED. This means that only nodes known to be attainable are used. It is

conceivable that ACTIVE nodes could be used but because these blocks have not been

thoroughly searched the path between adjacent ACTIVE nodes could conceivably be

obstructed by an object not previously detected. It is also possible to assume that FREE

nodes are not obstructed by obstacles and allow them to be used. This would equate to

55

performing path planning in uiknown waters, resulting in unacceptable inefficiencies.

ACTIVE and FREE nodes are therefore not used.

4. A-Star Data Structures

a. Agenda

The agenda is kept in a linked list which is sorted by criteria value from the

lowest to the highest. The principle node returned from the agenda is the highest priority

node which is located at the head of the list.

b. Path Map

The path map is an array with the same dimensions as the world array. It is

used to keep track of the path from the AUV to the node being analyzed. 12 Each node in

the path map contains slots for the coordinates of the previous node in the path, the

cumulative cost along the path, the state of the node, and a pointer to the corresponding

node in the agenda for easy reference. The states of the nodes in the path map array are

different from those maintained in the world array. They include:

- NOTEVAL. This indicates that the node has not been evaluated by the A-Star
algorithm. It is the default state for all nodes.

- FRONTIER. The node has been analyzed, its criteria value computed and
placed on the agenda for evaluation.

- CHECKED. The node has been evaluated and taken off of the agenda. It also
indicates that the path from the AUV to the node is the least cost path possible
at the time that the node is annotated CHECKED.

Every FRONTIER or CHECKED node has a unique path in the path map

which represents the known shortest path from the AU"! to that node.

12. In the A-Star search analyzed means that the node's state has been evaluated to determine ap-
propriate follow-on action.

56

c. Path List

This linked list is formed following the A-Star search proper by tracing

backward from the priority node to the AUV in the path map. It provides the optimal path

for advancing the AUV.

5. A-Star Algorithm

The flow diagram in Figure 28 gives the higher level process for the A-Star

intermediate-level path planning algorithm. The principle node is always the CHECKED

Interediae-Level Path I
Planning Algonth(A-S~ar)

Analyze
Neighbor Nodes

Of Principle Node

Get Pnnciple Node
From Agenda

noe it te owstcrteiavaue Nigbo nde o terinciple node arO anayzetan
added~ ~~~~~~~o toteaedrbsdo h iority vaue. A at nepincpendeithneree

Loop From Path Map

Figure 28: A-Starch Intermed iate. Level Path Planning Algorithm

node with the lowest criteria value. Neighbor nodes of the principle node are analyzed and

added to the agenda based on their criteria value. A new principle node is then retrieved

from the agenda. This cycle repeats until the principle node is the same node as the priority

57

node indicating that the goal has been reached. The path list is then created and the AUV

is advanced along this path.

a. Analyzing Nodes Which are Neighbors of the Principle Node

Figure 29 is a flow diagram of the procedures for analyzing the nodes which

are neighbors of the principle node.

Neighbor Node
Of Principle Node

An Nighbor NO=.
W n t t Analyzed, n RETURNLoop

YES

Neighbor Node

Iside World And
Nt OBSTACLE And

Either VISITED Or

tPriority Node Or
Adjaclt To AUV AndEither
FRONTIER Or

SAdd Neighbor Node

To Agenda

Figure 29: Analyzing Nodes Which are Neighbors of the Principle Node

When the A-Star algorithm is initiated, the node where the AUV is located is

the principle node. Old principle nodes are continuously replaced by new principle nodes

as the search expands. From the principle node, all neighbor nodes are analyzed and their

5h

criteria values are computed. If the neighbor node is not an OBSTACLE; is either

VISITED, the priority node, or immediately adjacent to the AUV; or if the node's state is

either FRONTIER or NOTEVAL then it is added to the agenda.

b. Adding Neighbor Nodes to Agenda

Figure 30 describes the process for adding neighbor nodes to the agenda.If the

neighbor node is a FRONTIER node, it has been previously placed on the agenda along

Add Neighbor Node
To Agenda

C c ri~eCteria
Value For

Neighbor Node

ifTE NO Change Neighbor

FRRONTIER

YES

Le ss Ilan RTR
SSame Node O

Node Froe Ag0da A Path Man

To A59the

Figure 30: Adding Nodes to Agenda

59

with its criteria value when the equivalent neighbor node of another principle node was

analyzed. The criteria value of the current neighbor node must be compared to the criteria

value of the equivalent node which is already on the agenda. If the criteria value of the

current neighbor node is less than the value of the equivalent node on the agenda, the

equivalent node is removed from the agenda. The path on the path map is then updated so

that the principle node is listed as the predecessor of the current neighbor node. Finally the

current neighbor node is added to the agenda according to its criteria value.

If the neighbor node is not a FRONTIER node then it has no equivalent node

already on the agenda. The neighbor node's state is changed to FRONTIER, the path on the

path map is updated so that the principle node is listed as the predecessor of the neighbor

node, and the neighbor node is added to the agenda according to its criteria value.

G. MINEFIELD SEARCH PERFORMANCE

The efficiency ratio, Eratio, was devised as a comparative measure of the efficiency

with which the AUV searches its environment. Eratio is defined as:

Eratio = DistanceReftrence
O DistanceTavld

DistanceReference is a function of the minimum distance required to search a minefield

void of obstacles corrected for the estimated distance to traverse through obstacles found

in this particular minefield.

DistanceR.IfrE Ce = NodesTozf t - (2 x ObstaclesTotal).

DistanceTraveled is a measurement of the actual distance traversed by the AUV from

the start to mission completion.

60

Empirical analysis shows that the Eratio varies directly with the complexity of the

obstacles in the minefield. Highly complex obstacles such as spiral mazes which overlap

numerous sub-areas have the greatest detrimental effect on efficiency. Less complex

obstacles which are indicative of those found in the real ocean environment have a very

minor effect on efficiency. Eratios varried from 1.0 for an obstacle free environment to

0.04 for a highly complex obstacle field.

H. EXPERIMENTAL RESULTS

1. Minefield Search Algorithm Verification

The minefield search algorithm has been verified against over 24 test routines

which exhaustively represent the mission requirements for static obstacle fields established

earlier in this chapter. The test routines included a variety of obstacle templates of various

densities and complexities.

a. Search All Attainable Blocks

In each test case the AUV visited every attainable node, searching the

corresponding blocks.

b. Start Search from any Node Not Obstructed by an Obstacle

The AUV was placed in FREE nodes throughout the minefield search areas

to begin its missions. In all cases, the AUV successfully completed its mission. When

placed in the interior of a solid OBSTACLE the vehicle immediately terminated its

mis3ion.

c. Ignore Nodes Which are Unattainable

The AUV did not attempt to evaluate any unattainable nodes. This included

nodes located in the interior of obstacles, above the ocean surface and within the ocean

bottom.

61

d. Perform Coarse Maneuvering Around Obstacles

In all test scenarios, the AUV successfully maneuvered around all obstacles

including those representing the ocean bottom and the ocean surface. It is significant to note

that this algorithm effectively serves as a coarse terrain following algorithm.

e. Successfully Search in Presence of Stove Pipe and Blind Alley Obstacle

Anomalies

While many search algorithms tend to get stuck in local minima when

confronted with stove pipes and blind alleys, the minefield search algorithm successfully

handled these pervasive problems. Variations on these obstacles included nearly all

possible orientations in both two and three dimensions. In all cases, the AUV searched the

interior of these obstacles when there was an attainable path and ignored the interior when

a path was not available.

2. Ladder Search In Prioritized and Non-Prioritized Sub-Area Environment

Tests were conducted which compared the efficiency of the minefield search

based on prioritized sub-areas to one based simply on the ladder search theme. Regardless

of the density of the obstacle field, the non-prioritized sub-area search returned an Eratio

which was approximately four percent more efficient than the prioritized sub-area search

provided. However, the non-prioritized sub-area search normally left many gaps in its

coverage which were generally not filled in until late in the search mission (again see

Figure 17).

I. CHANGING OBSTACLE ENVIRONMENT CONSIDERATIONS

The minefield search algorithm not only searches around stationary obstacles but also

adjusts for most moving obstacle situations. As the AUV advances along the path returned

in the path list it checks for an obstacle at each node to which it is advancing. If a new

obstacle is detected at that node, the AUV terminates advancing, updates the node to reflect

OBSTACLE and deletes the path list. The algorithm then reinitiates intermediate-level path

62

planning to the priority node using the AUV's current position as the starting point and the

revised world map of VISITED nodes.

While this adjustment works for most conceivable changes in the obstacle

environment there are three cases where it fails:

- The obstacle environment has changed so that the AUV is completely
surrounded by obstacles and no possible path is available to the priority node.

- The obstacle environment has changed so that the priority node is completely
surrounded by obstacles.

- The obstacle environment is changing so dynamically that the AUV perceives
that it or the priority node are completely surrounded even though this may not
be the case.

J. CONCLUSIONS AND FUTURE ALGORITHM DEVELOPMENT

The minefield search algorithm presented here is not an optimal search solution. It

does, however, successfully meet all of the mission requirements established earlier in this

chapter. What the algorithm lacks in search optimality it makes up for in adherence to the

important philosophy of thoroughly and systematically searching large sections of ocean.

It is extremely flexible. It does not require an a priori world map. It can be implemented in

any conceivable minefield search environment. The only necessary mission preparation is

to define the search area boundaries and the search track spacing. While the three-

dimensional algorithm provides the most flexibility, the two-dimensional algorithm may be

used in either two or two-and-one-half-dimensional search scenarios.

Future algorithm development should first focus on ways to optimize the search

solution while maintaining the prioritized sub-area philosophy. An immediate

improvement would be to substitute a best first search for the Euclidean distance method

for determining the priority node in the priority sub-area. This would eliminate the

efficiency problem presented when the closest node based on Euclidean distance is not the

closest node based on the actual path required to get to the node.

63

Another immediate focus should be the dynamic interface between a graphic simulator

and the search algorithm so that experiments with moving objects can be conducted.

Finally, alternatives to the prioritized sub-area method also need further investigation.

These alternatives could include specialized heuristic methods which utilize artificial

intelligence techniques.

64

V. MINEFIELD SEARCH SIMULATION

A. EVALUATION THROUGH VISUALIZATION

The testing of NPS AUV software is a difficult task because of the remote operating

nature of the AUV, the limited number of pool test missions available and the limited types

of mission that can be tested in the pool environment. These limitations can be partly

overcome by testing software performance in computer simulations. Such testing provides

important software performance validation prior to committing to actual AUV pool, or

eventually open ocean, test missions.[Ref. 14]

There are several levels of sophistication for evaluating the results of software testing.

One of the most common but least sophisticated methods is to analyze the output of raw

data. This method is slow, tedious, and prone to mistakes. In the case of the NPS AUV there

are 17 floating point numbers output to file every one-tenth of a second. The amount of data

to be analyzed in even very short missions becomes overwhelming. Because humans are
"visual beings" they have great difficulty assimilating these large amounts of raw data and

understanding the results.[Ref. 28]

The next level of sophistication is the output of data in the form of static two-

dimensional graphs. While this method allows close analysis of two-dimensional problems,

it becomes very confusing when analyzing complex problems in higher dimensions.

Next is the two and two-and-one-half-dimensional dynamic analysis of both discrete

and continuous data. This type of analysis is highly effective for analyzing information

which changes over time. However, like the two-dimensional graph it is difficult to

understand when analyzing problems of higher dimensions. Both the Two and Three-

Dimensional Graph Search Evaluation Tools are used for this type of analysis of the

minefield search algorithm.

Finally there is the dynamic analysis of data using three-dimensional graphical output.

This method allows flexible and effective analysis of data in up to three physical

65

dimensions plus the temporal dimension. Because the user can change his perspective,

problems which may have been overlooked in less sophisticated analysis methods often

become apparent. The NPS AUV Integrated Grapnic Simulator utilizes this method to

visualize AUV software performance. One aspect of this simulator which has not yet come

to fruition is the incorporation of a vehicle guidance module.

Figure 31 describes the flow of information for performing numerous types of

graphical analysis of AUV minefield search missions.

Obale Sac Mission
Simulator as Playback
Mission File
Playback

AUV
Guidance

Otacle Module

Two and Three-
Dimensional Graph
--Search Evaluation Tools Sca unplot i 'lyaknusisonle Graph

File

----31 [Integrated Graphic [• '
• ISimulator Laser Printer

Iris Workstation Sun Workstation

Figure 31: Minefield Search Information Flow Diagram For Graphical Analysis

66

1. Sunview "graph" and "sunplot" Two-Dimensional Analysis

A static two-dimensional image of vehicle track can be displayed by using the

Sunview "graph" command offered on UNIX.1 This image may be sent to a printer or can

be displayed at the Sun Workstation terminal using the "sunplot" command.2 Figure 32

shows the vehicle's track during a three-dimensional minefield search mission using the

graph command. While evaluation of mission performance can be performed more easily

using this method than by reading raw data output it is still difficult to analyze in three-

dimensional complex environments.

2. Two-Dimensional Graph Search Evaluation Tool

The Two-Dimensional Graph Search Evaluation Tool is implemented on a

Silicon Graphics Iris Workstation. 3 A graphic display of this tool's user interface is

provided in Figure 33. The following features make this tool highly useful when evaluating

two-dimensional discrete graph problems:

- Input is received from a file and consists of state, x and y values for each action
to be displayed.

- Output is the color graphic display showing changes in the state of each node
as they occur.

- Upload and playback of minefield search missions are performed through the
mouse menu.

- Multiple playback speeds may be selected through the mouse menu.

- Mission playback may be paused and resumed through the mouse menu.

- The state of individual nodes may be changed to OBSTACLE or FREE using
the point and click feature of the mouse. Multiple obstacle fields may be
constructed in this manner.

- An obstacle field may be saved to a file through the mouse menu for use by the

1. UNIX is a registered trademark of AT&T Bell Laboratories.
2. Sun and Sunview are trademarks of Sun Microsystems, Inc.
3. IRIS is a trademark of Silicon Graphics, Inc.

67

t7

z
-20 *~~~O 0 -0--~

Figure 32: Sunview "graph" Display of Th ree- Dimensional Minefield Search Mission

68

......
.

. ..

. --...... --.......
• .;. :.. .. ., .:. . ., :i~:] :....:......:.i

.-..-. .

..

Figure 33: Two-Dimensional Graph Search Evaluation Tool Display

minefield search algorithm.

- Position, sub-area number and state may be displayed for each node with the
point and click of the mouse.

- Distance traveled, the number of nodes traversed and efficiency ratio are
displayed.

- Search area dimensions may be changed rapidly through global variables.

3. Three-Dimensional Graph Search Evaluation Tool

This tool, depicted in Figure 34, provides a visual display of the change in node

states on each level of a three dimensional search, one level at a time. The features are

69

.........

X:~*
........

....+... ~ i i ii i
.....~ + ++ i++!+i~ii~iii~iiii~ii+!i

Figure 34: Three-Dimensional Graph Search Evaluation Tool
identical to those of the Two-Dimensional Graph Search Evaluation Tool with the

following additions or exceptions:

- Inputs include a z position component.

- Levels may be viewed individually through a mouse point and click on the
select level panel to the right of the search area.

- Different levels are represented by different colors, as well as by a pointer tothe selected level on the select level panel, for easy identification.

- Three-dimensional obstacle fields may be created and stored to a file.

- The displayed level -orresponds to the latest change in the state of a node onthat level, allowing the user to visualize significant mission events.

70

Figure 35: NPS Integrated Graphic Simulator Playback of Minefield Search

B. THREE-DIMENSIONAL LINE-OF-SIGHT GUIDANCE MODULE

This section presents a simple Euler based kinematics line-of-sight guidance model

which takes waypoint inputs from the minefield search algorithm, computes vehicle track,

and outputs continuous postures to the simulator.

There are many integration methods for deriving positional information from the

acceleration vector. T. Jurewicz proposes a modified Euler method which utilizes an

average predicted velocity [Ref. 11]. C. Magrino in conjunction with Y. Kanayama present

a method which utilizes spatial posture curvature values to determine vehicle path and

reference and error postures to return the vehicle to predefined paths [Ref. 13].

While these method have many advantages they may be unnecessarily complex for the

purpose of high level path analysis in minefield search playback. The following model was

chosen for this particular implementation.

72

e. Vehicle Posture Updates

Vehicle postures are updated as a function of the change in time At, vehicle

velocity v, elevation direction of change s, elevation rate e, azimuth direction of change (X

and azimuth rate a. The posture of the vehicle at t + 1 is equal to:

P1+1= (x,+lYt+l'ZI+l't 1'1t+',t+)

where

x1+ 1 x ((v x At) x cosW),

Y + I =Yt+((v x At) x sinW),

zI+ I= z±((v xAt) x sin0),

0+1 =0 1 + (x(ex At)),and

WI+ I= W, + (ccx (axAt)).

f. Relative Orientation

To determined guidance commands necessary to achieve a desired waypoint

the orientation of the vehicle at a given time relative to the waypoint W. must be

74

determined. This orientation is expressed as two components: relative elevation E and

relative azimuth IF. Relative elevation at time t is computed as:

ZI - Zn

@t = atan
2

I/(Xt- Xn) 2 +(Yt - Yn)2"

Relative azimuth at time t is computed as:

Yt - yn
't = atan.

Xt - Xn

g. Line-of-Sight Vehicle Guidance

Relative orientations E and T1 are compared to the elevation and azimuth

components 0 and xg of the vehicle posture to determine elevation direction of change £

and azimuth direction of change a commands for line-of-sight guidance. Both direction of

change commands are applied repeatedly, at each At, in the shortest angular direction in

an attempt to achieve a zero relative orientation.

2. Waypoint Sequencing

The NPS AUV guidance system sequences from the current waypoint to the next

when the vehicle is within a predefined radius of the current waypoint [Ref. 6]. The close

proximity of sequential waypoints to each other combined with a limited AUV turning

radius can cause a "spiraling effect" where the vehicle continuously tries but is unable to

capture a waypoint.

The waypoint sequencing method presented here avoids the spiraling effect by

defining an imaginary boundary perpendicular to the x,y plane which lies perpendicular to

the orientation azimuth component A (e.g. A ±) of the incoming track to each waypoint

W. from its predecessor Wn. 1. The exception is the first waypoint W1 where the boundary

75

is perpendicular to the orientation azimuth component of the outgoing track W1 to W2 (see

Figure 36). Elevation components of orientation with respect to the vehicle and the

waypoints are ignored (waypoint sequencing analysis uses only xy planar elements). This

decision has a precedence in that aircraft inertial navigation units typically ignore the

vertical reference when sequencing from one waypoint to the next.

The algorithm sequences through each waypoint and its successor comparing the

vehicle's relative orientation azimuth component Tw to the boundaries which point
W.

perpendicular to the incoming track orientation azimuth component An 1,n ± of

each waypoint. When ''w is found to lie within the relatively forward hemisphere of

Wn+ 1 and the aft hemisphere ot W., the vehicle is determined to between the two

waypoints. If Wn was previously the destination waypoint then Wn+1 becomes the new

destination waypoint. Figure 36 depicts this process.

The waypoint sequencing algorithm is implemented each time the vehicle updates

its posture until the final waypoint is reached and the mission terminates.

C. CONCLUSIONS AND FUTURE DEVELOPMENT

The visualization tools presented here have been invaluable in performing minefield

search algorithm development and evaluation. Each level of sophistication in visualization

had its own particular advantage in analyzing different aspects of the mission. The Graph

Search Evaluation Tools were particularly useful in performing discrete analysis of the

AUV's chosen paths. The NPS AUV Integrated Graphic Simulator, on the other hand, was

invaluable for viewing the continuous path of the AUV in three dimensions.

Another important factor was the design choice to completely separate the minefield

search algorithm from the simulators. This peimitted access to the simulators for mission

analysis even when the minefield search code contained flaws. It proved critical in

determining the source of many of those flaws.

76

Io ° I

*B° I

°-° I

4 3, 8, 16 .

W3°'(13, 6, 168 7)

A +

! iA1,2+
.............

* I

A +

A
A

Figure 36: Waypoint sequencing determinatio- based on azimuth orientation
component of AUV to orientation of successive waypoints.

A future development should be the testing of the minefield search algorithm within

the Gespac component of the NPS AUV Integrated Graphic Simulator once the guidance

module and other software modules have been loaded and evaluated. This testing will

ensure that the software is directly portable to the actual NPS AUV. It will also eliminate

the need for the add-on guidance package presented in this chapter.

77

VI. AUTONOMOUS SONAR CLASSIFICATION USING EXPERT SYSTEMS

A. INTRODUCTION

Intelligent vehicles will play a major role in future underwater missions such as the

minefield search mission presented in this thesis. A critical requirement for independent

behavior by such vehicles is autonomous analysis of complex and variable ocean

environments. This is a notoriously difficult task, even when human operators use

sophisticated sensors and powerful processors.

Although much work has been done in vision processing for mobile robots, additional

research has been needed on interpretation of observed scenes and terrain [Ref. 29].

Numerous approaches to the general object-recognition problem are presented in [Ref. 30].

Both of these references can be found in [Ref. 31], an essential collection of surveys,

tutorials and fundamental research papers regarding mobile robot sensor perception,

mapping and navigation. Other references included in [Ref. 311] are [Ref. 32] and LRef. 33].

Independent and meaningful interpretation of sensor data is a principal prerequisite for

accomplishing high-level AUV missions and behaviors. A number of universities and

laboratories are conducting autonomous underwater vehicle (AUV) research and

development that involves a wide variety of sensor types and sensor interpretation methods.

The Defense Advanced Research Projects Agency (DARPA) Unmanned Undersea Vehicle

(UUV) uses sidescan sonar and neural network classification for underwater mine detection

[Ref. 15]. Woods Hole Oceanographic Institution has used sidescan sonar, stochastic

backprojection and a variety of vision processing techniques and sea floor shape

information to create three-dimensional bottom images [Ref. 34]. The University of New

Hampshire Experimental Autonomous Vehicle (EAVE) III uses depth profiling, acoustic

long baseline navigation and comparison with a world model to detect bottom objects [Ref.

35]. Numerous other examples of sensor data interpretation exist. In contrast to most

methods, the sonar classification system presented in this chapter uses parametric

78

regression, geometric analysis and expert system heuristics to create classifiable object

types. An advantage of this method is that progressively higher levels of object abstraction

are possible.

B. OVERVIEW

The objective of this chapter is to present a method for autonomous classification of

underwater objects. This is achieved using geometric sonar analysis techniques and an

expert system for heuristic reasoning.

This research effectively demonstrates that geometric analysis can be combined with

an expert system to process, analyze and classify active sonar range and bearing data in

support of AUV operations. Figure 37 shows how low-level sonar data is pro -ssed to

produce increasingly complex geometric objects and high-level classification outputs.

Geometric analysis can distill large amounts of sonar data into useful information

which can be used to make logical and informed decisions. The primary difficulty in

geometric sonar analysis is that active sonar signal returns are inherently noisy and

unconnected. Parametric regression is a robust method of least-squares line fitting that

permits precise geometric analysis of range and bearing data.[Ref. 36] Generated

regression lines are provided to a polyhedron-building algorithm to create geometric

objects. Geometric object attributes can then be compared to known object types through

the rule-based pattern-matching capabilities of an expert system, resulting in object

classification.

The possible types of object classes to be detected are typically limited in number and

somewhat predictable given a priori knowledge of the underwater environment.

Geographic objects to be detected and classified include the ocean bottom, sea mountains,

valleys, rock outcroppings and walls. Biological objects include fish, kelp, scuoa divers and

large animals such as dolphin or whales. Man-made objects include ships, submarines,

torpedoes, mines, nets, pipes and cables. These object classes of interest are listed in Table

DThe relatively small number of underwater objects of interest simplifies sonar

79

Sonar Range and Bearing Inputs

Extract Line Segments
using Parametric Regression

Build Polyhedron

from Line Segments

Quantify Polyhedron Attributes

SPattern-match Classification

Classified Object Output

Figure 37: Autonomous Sonar Classification Process Diagram

classification criteria. Primary expert system outputs are location, size, and classification

of all sonar contacts.

Expert systems are an established methodology that can effectively and clearly

represent specialized human knowledge using algorithms and heuristic rules. Typically the

functions performed by an expert system would otherwise require human action by a

knowledgeable expert. The expert system approach is applicable to a wide variety of

80

complex problems, even when no single expert understands all aspects of a particular

problem domain.

TABLE D: EXAMPLE UNDERWATER OBJECT CLASSIFICATION TYPES

Geographic Biological Man-made

Ocean Bottom Fish Ship

Sea Mountain Kelp Submarine

Valley Scuba Diver Mine

Rock Outcropping Dolphin Torpedo

Wall Whale Net

Sea Surface Shark Pipe or Cable

Unknown

The use of real world data is important for development and verification of a sonar

classification expert system. Naval Postgraduate School (NPS) students and faculty have

designed and built a working AUV which can be used to provide a variety of classifiable

sonar data. Successful examples of expert system classifications using NPS AUV sonar

data are described in detail.

The expert system approach also appears to be usable for sensor fusion using a wide

variety of sonar types as well as non-acoustic sensors such as laser rangefinders and video.

Many exciting future applications should be possible using expert system methods.

C. GEOMETRIC ANALYSIS OF SONAR DATA

1. General Characteristics of Active Sonar Data

Outputs common to practically all active sonars are range and bearing from the

sonar transducer to a contact, if any is detected. Posture of an underwater vehicle includes

a three-dimensional position coordinate, as well as vehicle attitude consisting of roll,

elevation and azimuth orientations. The relative position of each sonar return is combined

with vehicle posture using vector addition to yield a precise three-dimensional coordinate.

81

In this chapter the term "sonar data" refers to simultaneous sonar range and bearing data

returned from an active sonar transmission.

2. Geometric Primitives and Object Attribute Definitions

Sonar data can be analyzed to produce geometric forms such as points, lines or

polyhedra. Precise definitions of geometric primitives and object attributes are necessary

for predictable and repeatable sonar classifier performance. It is important that the

theoretical basis of a sonar classification expert system be both mathematically rigorous

and as general as possible in order to allow increasingly sophisticated analysis of data. A

formal geometry-based approach also permits expert system compatibility with a wide

variety of sonar types.

The geometric primitives considered by this expert system are point, line

segment, polyhedron and cylindrical polyhedron (i.e. a three-dimensional polyhedron that

extends vertically up and down from a planar polygon perimeter). Object attributes include

centroid position, depth, length, width, height, perimeter, cross-sectional area, thinness,

and volume. Indirect attributes such as positional accuracy, confidence factor, inferred

edges and hidden edges are also evaluated.

Additional geometric primitives and object attributes can be defined as necessary

to utilize the more sophisticated data available from sector scanning, two-dimensional

swath or three-dimensional multi-beam sonars. Similar approaches using curved shapes

such as circles, ellipses or conics would also be compatible.[Ref. 33]

3. Extracting Line Segments using Parametric Regression

Linear relationships described by sets of discrete data are typically found using

standard linear regression analysis, commonly known as least-squares fit. This method is

widely used but has a significant limitation in that regression calculations on (x,y)

coordinate points parallel to the y-axis result in divide-by-zero singularities for slope and

mathematically undefined regression results. Since typical unconstrained sonar data may

82

lie along any three-dimensional orientation, a different method is needed for autonomous

fitting of best-approximation line segments to a series of discrete sonar returns.

The parametric regression method utilizes a polar coordinate derivation of linear

regression analysis to provide a robust and accurate least-squares fit of line segments to

sequences of data points. This method has been developed in detail and is particularly well

suited for geometric analysis of real-world sonar data. [Ref. 37] [Ref. 38] [Ref. 36] [Ref. 6]

Associated with each regression line segment is an elliptical thinness term which can be

used as a metric for line segment accuracy and data variance. Figure 38 shows a typical

parametric regression line segment fit to a set of sonar returns.

0 0
0 0

0 00
0

0 0 A e 0 0 0 00 0
a- Vi / V V UL a V U V U 0

Sonar Returns Parametric Regression Line

Figure 38: Typical Parametric Regression Line Fit

A further significant benefit of parametric regression analysis is that it is a

sequential algorithm which provides immediate incremental improvements upon receipt of

each individual data point. The sequential nature of this algorithm makes it highly suited

for real-time operations which must meet immediate response requirements. Real-time

vehicles cannot afford to wait for intermittently time-consuming sonar analysis when

excessive delay might jeopardize navigational safety.

4. Building a Polyhedron from Line Segments

Parametric regression provides linear one-dimensional geometric primitives.

However line segments by themselves are insufficient for thorough two-dimensional

83

spatial reasoning or object classification. A polyhedron-building algorithm is presented

here as a means of constructing two-dimensional geometric objects from a sequence of

regression line segments. In this context the polyhedron-building algorithm is a logical

extension to the parametric regression algorithm.

One important assumption used when building polyhedra is that underwater

contacts of interest have predominantly convex shapes, i.e. they contain no large concave

depressions or cavities. This assumption permits clear delineation of independent object

boundaries. Analysis of an actual concave object results in the definition of adjacent convex

objects. Higher-level analysis at the heuristic level can be used to clump adjacent objects if

needed.

Note that the orientation of vehicle sonar relative to detected objects is a critical

consideration in the polyhedron building algorithm, since spatial relationships are equally

dependent on sensor perspective and actual object shape.

Polyhedron building begins with a single line segment produced by parametric

regression analysis of continuous sonar data. Each following segment from regression

analysis on the same sensor is compared to the previous segment. If the follow-on segment

meets proximity and orientation criteria, then it is considered to be another part of the same

geometric object. This segment comparison process is repeated until proximity or

orientation criteria fail, at which time the previous geometric object is complete and the

follow-on segment becomes the beginning segment of a new geometric object.

Proximity is measured between the end point of the most recently correlated line

segment and the start point of the next segment to be considered. The proximity criterion

is typically small and restrictive (e.g. less than 1 foot) in order to permit discrimination

between adjacent objects. The proximity criterion must be met prior to comparing relative

orientation for geometric object extension.

Orientation comparisons are made to determine whether adjacent segments are

colinear, convex or concave. The colinear test allows a reasonable error bound (e.g. 10) in

84

order to account for sonar noise and line-fitting approximations. Colinear segments are

acceptable for geometric object extension (Figure 39).

Figure 39: Examples of Colinear Regression Line Segments

The convex test measures whether the follow-on segment direction points farther

away from the sensor's perspective than the previous segment. Convex segments are also

acceptable for geometric object extension (Figure 40).

Figure 40: Examples of Convex Regression Line Segments

The concave test measures whether the follow-on segment direction points closer

towards the sensor's perspective than the previous segment, in effect defining the

boundaries of a hole. Concave line segment relative orientations indicate a break between

85

separate convex geometric objects (Figure 41). The follow-on segment is used to start a

new polyhedron.

Figure 41: Examples of Concave Regression Line Segments

Inferred edges are presumed to exist between each pair of the sequential detected

edges that make up a polyhedrcn. A single hidden edge is presumed to exist between the

start point and end point of a particular object. The classifier should recognize, however,

that such hidden edges may be completely inaccurate since the actual hidden sides of the

object were obscured from the sonar.

In summary, the polyhedron-building algorithm correlates regression line

segments into two-dimensional polyhedral objects. This method enables the application of

computational geometry techniques to analyze large volumes of discrete range and bearing

data. Figure 42 illustrates the polyhedron-building algorithm.

5. Quantifying Polyhedron Attributes

The attributes which are used to classify objects should be precisely defined and

calculated, wherever possible. For example, attributes such as depth, length, width and

height are directly measurable using calculated sonar positions. Object perimeter can be

determined by first summing the lengths of all correlated line segments, and then adding

the lengths of all inferred and hidden edges that are presumed to exist between detected

86

STAR

Get line segment
Start new polyhedron

Termint Polyhedronl

Calculate
LtGet next sAttributes

adjacent I - -'-m--'-

Adline segment

/Test F A I L

'I erminate polyhedron
Determine hidden edge
Calculate attributes
Latest segment starts

VPASS new polygon

PASSI
Add segment to ,"Test
polyhedron Colnea
Determine latest
inferred edge

PASS /Test FAIL

(Concave orientation)

Figure 42: Algorithm to Build Polyhedra from Line Segments

87

edges. Figure 43 shows how the start point, regression line segments, inferred edges and

hidden edge which make up a polyhedron cross-section define a series of triangular areas.

end point

start point

. -

regression line segment

inferred edge

......................... hidden edge

Figure 43: Summing Triangle Areas to Determine Polyhedron Cross-Sectional Area

Area of a single triangle is given by:

AeraA = ([(X2 -X 1) (Y3 -Y1)- (X 3 -XI) (Y 2 -Y 1)].

Polyhedron cross-sectional area is determined by summing the area of these

triangles, given by:

AreapolyhedroI = Xe [AreaA sr-on,+ AreaA smpit
rig ressio regrssi.n in.

88

Centroid position for a triangle is calculated using:

Triangle XI+X2+X Yl+Y 2 +Y 3
Centroid = 3 3 3

Centroid position for the polyhedron cross-section is precisely determined by

taking the weighted average of each of the triangle centroids, given by:

Polyhedron AreaAtXc ... + AreaNXc_,_AreaN)Yc + ."' +AreaAYc)

Cross -section Aray=,, (reaN Colyhe+ rea 1Centroid Areapo1~Acdr~n Areapt~hedrom

Polyhedron cross-section thinness is defined as the ratio of polyhedron area to the

square of polyhedron perimeter, given by:

Polyhedron
Cross- section = PolyhedronArea

Thinness (PolyhedronPerimeter) 2

If object height is needed and has not been directly measured, it can be estimated

using heuristic rules based on object depth, bottom depth or independent object

classification. Object volume is the product of cross-sectional area and measured or

estimated object height.

Indirect attributes such as positional accuracy, confidence factor, inferred edges

and hidden edges are also evaluated. Point positional accuracy is derived by combining

current vehicle positional accuracy estimate with sonar accuracy or sonar beamwidth at the

range to the object. Confidence factor can be defined independently of positional accuracy

as a measure of how well the object matches a classification rule. Hidden edge length is a

measure of what is not known about the object. Defining initial classification confidence

factor as the ratio between hidden edge length and detected perimeter further indicates how

much of the contact has actually been evaluated. Hidden edge metrics can be used to

indicate whether further sonar investigation of the contact is desirable. Figure 44 shows

89

detected edges, inferred edges and hidden edge relative to processed sonar returns, and how

these geometric primitives may not fully reveal all features of a contact.

start point

i-

- regression line segment

inferred edge
...........hidden edge

Figure 44: Polyhedron detected edges, inferred edges and hidden edge may not
fully reveal all features of the sonar contact.

D. EXPERT SYSTEM HEURISTICS FOR SONAR CLASSIFICATION

While geometric analysis can be defined with mathematical precision, human

knowledge regarding sonar classification is less rigorous and can best be encoded as expert

system heuristics.

1. Classification Heuristics and Attribute Heuristics

Sonar classification is not always a well defined problem. For example, it is

possible that sonar analysis of a single object can be rerformed from different directions

and lead to completely different classifications. An analogy to classifying objects using

simple range and bearing sonars is attempting to identify your surroundings while looking

at the world through a steerable pinhole. It is difficult! Consequently, sonar classification
criteria are often ambiguous and difficult to quantify, even when using formally derived

90

geometric primitives. However, the heuristic approach used by expert systems is effective

in many types of inexact problems and enables an autonomous system to obtain excellent

sonar classification results.

Heuristics can be used for evaluating attributes such as object height when

information is incomplete. Both attribute and classification heuristics can be easily

modified in understandable ways despite the ambiguities of sonar analysis. The intuitive

power of heuristics combined with the precision of geometric analysis gives sonar

classification expert systems wide applicability and adaptability.

For this expert system, classification of sonar contacts is performed by

comparing attributes of detected objects with predetermined attributes of known objects of

interest. Different classification criteria are necessary and desirable for different

environments. In particular, the different characteristics of deep ocean versus shallow water

versus an artificial pool will constrain the possible types of objects to be detected.

Knowledge of the current environment can be extremely useful when determining the

specialized classification rules and heuristic criteria to be used for a given mission.

Precise classification of every possible object type may not be necessary for

some missions. Resolution of an ambiguous classification typically requires multiple

sensor looks, costing additional time and energy. Preliminary classification as a potential

contact of interest may be sufficient to justify maneuvering for additional sensing and

closer investigation. Conversely, objects deemed to be of no interest require no further

investigation by the vehicle.

Size can be the primary classification attribute for most underwater objects of

interest. However, size per se is not a strictly defined term. It is worth mention that

significant object size may be indicated by a variety of attributes including cross-sectional

area, volume, perimeter, thinness or hidden edge length. Any or all of these size-related

attributes may require close evaluation in order to properly discriminate between similarly

sized sonar targets such as mines and rocks.

91

2. Pattern-match Classification Examples

Examples of how heuristic rules work can illustrate how a sonar expert system can

classify objects. Two examples are presented here.

Preliminary wall classification is possible during the execution of the polyhedron-

building algorithm. Walls are defined as any flat linear surface of non-trivial length.

Polyhedra being built can be considered as walls as long as each of the newly added

regression line segments meet colinearity and proximity criteria. As soon as the

polyhedron-building algorithm adds a new line segment based on convexity criteria, the

polyhedron being built can be immediately reclassified from wall to object since the

polyhedron is no longer linear.

Once a polyhedron has been built, all polyhedron attributes are automatically

calculated. At this final stage, all of the preliminary work to quantitatively determine

precise geometric objects greatly simplifies object classification. For instance, a

polyhedron might be classified as a mine-like object whenever cross-sectional area is

between 10 anti 100 square feet (Figure 45). Other objects can be classified in an equally

straightforward manner.

Some objects should not be uniquely classified. For example, discrimination

between a scuba diver and a mine-like object may be difficult. A particular strength of the

expert system approach is that each object can receive multiple classifications with

associated confidence factors as appropriate. This feature allows high-level reasoning using

uncertainty, rather than being constrained by an arbitrary and potentially incorrect single

classification.

What was originally an intractable sonar classification problem is now much

simpler and understandable at the highest level of the expert system.

3. Self-Diagnosis and Self-Correction

An additional strength of the expert system paradigm is that rules can be written

to evaluate overall system performance, correcting internal vehicle problems without

92

(defrule classify-mine-like-object

if this left-hand side of the rule is found to be true:

?poly <- (Polyhedron (status COMPLETE)

(classification OBJEC"T)

(start ?startpolytime)

(end ?endpolytime)

(area ?area))

then perform this right-hand side of the classification rule:

(if (and (>= ?area 10.0) (<= ?area 100.0)) ; area criteria test

then (modify ?poly (classification MINE))

(printout t "The polyhedron at times ?startpolytime

?endpolytime)

(printout t "has classification MINE.")

Figure 45: Classification Rule for a Mine-Like Object

external control. Self-diagnosis is possible when expert system evaluation of sensor data

differs from a priori knowledge of the real world. Such differences can be automatically

fed back into the system to correct the offending error. As an example, gyro error and gyro

drift rate can be diagnosed and quantified when a deduced wall orientation does not match

known geographic data. Updating system estimates of gyro error and gyro drift rate result

in an immediate improvement in sonar accuracy and positional estimates.

E. EXPERT SYSTEM PARADIGM

The power of an expert system is essential for a sonar classifier to perform high-level

reasoning using qualitative attribute and sonar classification heuristics. This section

describes the salient features of expert systems which are pertinent to the development of

an autonomous sonar classifier.

93

1. Expert System Characteristics

An expert system typically includes the following characteristics: it simulates

human reasoning about a problem domain, it uses symbolic knowleuge representation and

rules of thumb, it can analyze problems using heuristic or approximate methods which may

not be guaranteed to succeed, and it deals with complexity which normally would require

a human expert [Ref. 39]. Expert system development differs from usual software

engineering approaches in that rules of thumb can be developed incrementally to solve

large problems which do not necessarily have a clearly defined solution methodology.

Complementary rules work together without explicit supervision to discover solutions,

should any exist.

2. Knowledge Representation a . Reasoning using Facts, Rules and an

Inference Engine

Expert systems typically use facts to represent knowledge about the state of the

problem domain. Eacs can be known prior to execution as part of the problem definition,

and can also be discovered during program execution as new data becomes available or new

knowledge is deduced. Rules are heuristic representations of human reasoning that follow

the condition-action model. If a rule finds certain conditions to be true, then corresponding

actions will follow and the rule is said to execute or "fire". The inference engine is the

mechanism that allows all of the rules to individually examine the fact database and fire.

The order of rule precedence and firing may range from random sequencing to a strictly

defined execution order.

Strict execution order is typical of traditional programming paradigms but is

usually considered to be an undesirable constraint for expert systems. Interestingly, random

firing of expert system rules often uncovers solutions to problems that might otherwise be

considered unsolvable using a strictly defined sequential approach.

94

3. Rule Sets and Control of Execution Flow

Given that a single rule may be inadequate to fully evaluate a complex situation,

often groups of rules called "rule sets" are written to work together on particularly difficult

analysis tasks. Such organization of rules allows a manageable and modular approach to

expert system design. However, the random nature of rule firing allowed by an inference

engine may permit partially processed facts to be accessed and used by other rules before

the original rule set has completed the group objective. For this reason it is usually desirable

to ensure that rule sets are able to run to completion whenever activated, before other rules

are again allowed to fire. As an example, implementation of the algorithm in Figure 42

requires several polyhedron building rule sets working together in a coordinated fashion

with parametric regression rule sets.

Given the unpredictable nature of heuristics when solving highly complex

problems, the expert system designer may need to impose some controls on execution flow

among rule sets in order to ensure orderly execution. Randomness generally remains

desirable and can still coexist within the bounds of rule execution flow control

requirements.

4. Developing an Expert System

When a new application appears to be suitable for an expert system

implementation, the first developmental step is to define the application problem in clearly

understandable terms. This usually requires acquisition of expert knowledge in the problem

area to be solved. The facts which may exist in the problem domain should be stated as

unambiguously as possible. The overall problem should be logically grouped into simply

stated subproblems consisting of condition-action rules.[Ref. 39]

Once the problem is well-defined, facts and rules are converted from plain

language into the syntax of the expert system being used. When first building an expert

system, facts and rules should be added in small numbers. Incrementally test the expert

system and avoid adding new rule sets until examples show that existing rules work as

95

intended. Additional adjustment may be necessary to ensure mutual rule cooperation

whenever new rules are added. Such an incremental prototyping approach can be

particularly effective when building large expert systems.[Ref. 401

F. IMPLEMENTATION AND EVALUATION

1. NPS AUV Pool Experimentation

A distinct advantage of the NPS AUV program is that an actual vehicle

specifically designed for maneuvering in a large swimming pool is available for test and

evaluation. The sonar evaluation experiment presented in this chapter utilizes such actual

vehicle sonar evaluation data. Video clips showing typical NPS AUV pool operations are

available in [Ref. 41] and [Ref. 42].

2. CLIPS Expert System

A number of expert systems are commercially available. CLIPS ("C" Language

Integrated Production System) was chosen for this application due to its portability,

extensibility, capabilities, thorough documentation and interactive tutorials [Ref. 43].

CLIPS is also reasonably priced (approximately $450 or free for government agencies).

CLIPS was developed by NASA to meet the varied requirements of NASA Mission

Control Center delivery systems. CLIPS syntax is similar to the functional language Lisp

and follows the if-then conditional rule model. The most recent versions of CLIPS add

object-oriented and procedural programming capabilities.[Ref. 44] Since it is written in

"C", CLIPS can run under most computer architectures. A feature of CLIPS that makes it

particularly suitable for AUV use is that developed expert systems may be exported to

nearly any microprocessor by autogeneration of executable "C" language code. CLIPS has

an active user base, annual applications conferences, an applications abstract registry and

is provided with complete source code.[Ref. 45]

96

3. NPS AUV Sonar Classification System

The program used to implement the concepts presented in this chapter was written

using the CLIPS expert system. Actual sonar data collected by the NPS AUV is recorded

in files for later use as input to the sonar classification expert system. This sonar data is

analyzed off-line while running on a separate workstation.

A variety of outputs from the expert system provide several ways to visualize

results. Two-dimensional graphics plots of raw sonar data and corresponding parametric

regression line segments are shown on screen and as hard copy. An output file listing each

individual geometric object and classification provides both hard copy of results and

automatic input to the three-dimensional NPS AUV Integrated Simulator described below.

Sonar geometric analysis is computationally intensive. While running under the

CLIPS environment on a Sun SPARC 2 workstation, the expert system is currently able to

maintain a 7 Hz sonar return processing rate. This is nearly as fast as the 10 Hz data rate

recorded by the NPS AUV and adequate for most real-time requirements. Optimization,

elimination of network file server bottlenecks and source code compilation should further

improve performance. Project goals include porting the NPS AUV sonar classification

expert system to a microprocessor internal to the vehicle.

It is clear that a sonar classification expert system could operate autonomously in

real time.

4. NPS AUV Integrated Simulator

Typically the development and testing of AUV hardware and software is greatly

complicated by vehicle inaccessibility during operation. Integrated simulation remotely

links vehicle components and support equipment with graphics simulation workstations.

Integration of actual AUV components with three-dimensional simulation allows complete

real-time, pre-mission, pseudo-mission and post-mission visualization and analysis in the

lab. Integrated simulator testing of AUVs is a broad and versatile method that has proven

97

very effective in the development of the NPS AUV sonar classification expert system [Ref.

14] [Ref. 42].

In particular, post-mission simulator playback of recorded telemetry, sonar sensor

data and system state transitions supports in-depth reenactment, playback and analysis of

processed sonar data. This scientific visualization approach permits rapid and precise

development of geometric analysis techniques and classification heuristics for the NPS

AUV sonar classification system.

High-resolution three-dimensional graphics workstations can provide real-time

representations of vehicle dynamics, control system behavior, mission execution, sonar

processing and object classification. Use of well-defined, user-readable mission log files as

the data transfer mechanism allows consistent and repeatable simulation of all AUV

operations.

G. EXPERIMENTAL RESULTS

1. Classification Test Scenario

An example best demonstrates successful classification of actual sonar returns. A

single swimmer was chosen to represent a mine-like object and was positioned as a target

near the right-hand wall of the NPS swimming pool, shown in Figure 46.

The NPS AUV was programmed to follow a racetrack traversal of the pool and

record all pertinent data. Figure 47 shows individual left transducer sonar returns plotted as

circles and vehicle track as a large oval, while the line segments calculated by the

parametric regression algorithm are shown superimposed. Some distortion is evident due

to unmodeled sideslip error in vehicle track data.

2. Experimental Results

The sonar data recorded by the NPS AUV in the pool are uploaded after mission

completion via modem and processed off-line by the sonar classification expert system.

Classification results are then gtiphically rendered by the NPS AUV Integrated Simulator

running on a Silicon Graphics Iris vorksttion. This three-dimensional display shows all

98

swimmer r

Figure 46: NPS AUV test mission is conducted using left transducer. Note the

swimmer target.

generated parametric regression line segments, inferred edges, hidden edges, and detected

walls. The overall pool graphics display as seen from a viewpoint high above the pool is

shown in Figure 48. The target of interest met classification criteria for a mine-like object

and a simulation close-up is shown in Figure 49.

The integrated simulator has the additional feature of being able to play back

sonar detections and classifications simultaneously with vehicle motion in real time or slow

motion. Evaluation of sonar classification results using the scientific visualization

techniques provided by the integrated simulator was extremely helpful during development

and testing of sonar expert system classification heuristics.

The assessment of experimental results is that the NPS AUV Autonomous Sonar

Classification System is highly effective at classifying objects despite the low resolution of

the active sonar employed.

99

Ik

Figure 47: NPS AUV Sonar Classification Expert System Plot of Pool Data and
Parametric Regression Line Segments

Figure 48: Integrated Simulator Screen Display Of The Full NPS Pool And All
Sonar Classifications

100

Figure 49: Integrated Simulator Display Close-Up of a Mine-Like Object Classified
by the Sonar Expert System using Directed Edges, Inferred Edges, Hidden Edges

and Cross-Sectional Area

t. DISCUSSIONS AND APPLICATIONS

1. Extendabi'*y to Video, Lasers, Complex Sonars and Sensor Fusion

Active sonar is not the exclusive sensor used for underwater object detection and

classification. A variety of other sensors are coming into use including underwater

videocameras and lasers. In addition to range and bearing data, advanced sonars may

provide completely different types of data such as frequency spectra, doppler or long-range

conical beam data. Ultrasonic sonars have also been employed by land vehicles.

All of these sensors share common characteristics which allow autonomous

analysis by expert systems. Each sensor type provides data sets that can be analyzed using

geometric reasoning techniques. In every case expert knowledge can define both

quantitative and heuristic rules for processing sensor outputs to create primitive geometric

objects, thus allowing object classification.

101

Sensor fusion is the correlation of multisource information to resolve ambiguity

and increase confidence in individual classifications. Sensor fusion is particularly valuable

in offsetting the weaknesses of one sensor type with the strengths of another. An example

of sensor fusion might be to correlate accurate laser bearing data with accurate sonar range

data. A thorough survey on multisensor fusion roles, approaches and applications is

provided by [Ref. 32). Seasor fusion can be directly implemented using the pattern-

matching capabilities of a multisensor classification expert system.

2. Intelligent Remote Sensors

The use of remote sensors is becoming commonplace. The primary limitation of

most remote sensors is that they have little ability to independently react to sensor inputs.

Most sensing devices require direct control or have an arbitrary sampling period, while

continuously-sensing devices require dedicated data communication lines. Remote

underwater sensors need to operate autonomously or with minimal external control in order

to improve their efficiency, capabilities and cost-effectiveness. Embedding an expert

system application using microprocessor-based control is a feasible method to create

intelligent and autonomous remote sensors.

3. Data Reduction

Most sensor data is high bandwidth. Autonomous vehicles, remotely operated

vehicles and remote sensors typically receive extremely large amounts of data. Storage or

transmission of raw data for off-line processing is undesirable and imposes unreasonable

memory capacity and communications requirements. A significant benefit of autonomous

classification is that it reduces massive amounts of raw data into concise information which

can be efficiently recorded or communicated. Data without value is easily filtered. The

overall data compression ratio can equal several orders of magnitude.

102

4. Future Use of Expert Systems by Autonomous Vehicles

If autonomous vehicle sensors and missions are to become increasingly capable

and sophisticated, it is likely that parallel processing of distributed artificial intelligence

modules will be necessary in order to provide adequate computing power with real-time

response. A typical set of high-level processes might include detection and classification

for multiple sensors, path planning, search, systems control and others. None of these

processes is completely independent, but typically each process can run in parallel with the

others most of the time. One abstract software architecture that supports such a distributed

approach is the blackboard paradigm.

A blackboard system directly extends the functionality seen in an expert system

for a collection of distributed processes [Ref. 39]. A good metaphor for the blackboard

approach is a group of human experts working together on a large problem using a

blackboard as their means of communication. Problem definition, data, questions and

answers can all be written and read on various sections of the blackboard. Each independent

expert has full access to the blackboard and looks for information pertinent to his area of

expertise. When an expert develops some result or new question worth communicating to

the group, that information is recorded on the blackboard.

Similarly, a blackboard system has distributed independent knowledge sources,

each of which can use any method desired to solve portions of a large problem.

Communications are recorded on the blackboard and are available to all knowledge

sources. Complex problems are solved through cooperative reasoning.[Ref. 46] As another

example, each of the processes shown in Figure 37 could be implemented as separate

knowledge sources for a blackboard. Expert systems are well suited as knowledge sources

for the blackboard paradigm.

Development of autonomous expert systems is likely to provide intelligent

components that will remain useful in the advanced architectures of future autonomous

vehicles.

103

L CONCLUSIONS AND FUTURE DEVELOPMENT

Autonomous sonar classification systems can accurately detect and classify objects in

the underwater environment. Precise geometric analysis is combined with qualitative

expert system heuristics to provide a flexible and robust approach with wide applicability.

Autonomous classification systems are capable of supporting sophisticated real-time

applications in working autonomous vehicles.

Future developments should include additional higher-level heuristic rules for refining

object classifications. Because AUV pool missions are limited in scope it is also important

that AUV sonar simulation beyond the work completed by C. Floyd be conducted. Analysis

of rudimentary virtual sonar data should be possible within the graphic simulator

environment [Ref. 6]. Future development should also investigate the possible synergistic

effects of combining the features of expert systems with those of neural networks. A neural

network which is trained by an expert system in real-world environments could be

employed on the microchip level in future AUVs.

In conclusion, the application of autonomous sonar contact classification systems is

critical for the successful conduct of important Naval missions such as the minefield search

mission presented in this thesis.

104

VII. CONCLUSION

This thesis addressed the following important aspects of the AUV minefield search

mission:

- minefield search path planning and replanning

- autonomous sonar classification of underwater objects using expert systems

- AUV software performance evaluation through graphic simulation

The conclusions from each of these separate mission aspects are addressed at the end

of their respective chapters.

The involvement of officers at the Naval Postgraduate School in AUV research

provides an important link between the laboratory and the "real world" where AUVs will

be employed. The cooperation between officers and researchers who mutually develop this

technology will ensure that AUVs meet fleet needs in the most effective manner. It is hoped

that this thesis has contributed to this goal.

105

APPENDIX A: TWO-DIMENSIONAL MINEFIELD SEARCH SOURCE CODE

Title: mine2d.h
Author: Mark Compton
Course: Thesis
Date: 09 March 1992

Description: This program is a graph-based, two-dimensional search. algorithm
for minefield search missions by AUVs.

Support: mine2d.c
Display: Output files may be run in Two-Dimensional Graph Search Tool.
* **************************** **** **************************

/*Preprocessing Directives**/
#define BOXWIDTH 15.0 /* box width
#define BOXHEIGHT 15.0 /* box height
#define MAXX 63 /* number of nodes in x direction */
#define MAXY 63 /* number of nodes in y direction */
#define SUBX 7 /* number of subareas in x direction */
#define SUBY 7 /* number of subareas in y direction */
#define SUBXNODES 9 /* number of nodes in each subarea in x direction */
#define SUBYNODES 9 /* number of nodes in each subarea in y direction */
#define MAXSTRING 20 /* for file names */

#define ODD 1 /* defines if a value is odd */
#define EVEN 0 /* defines if a value is even */

#define TRUE 1 /* needed on non iris */
#define FALSE 0

/* defines states of a node */
#define FREE 0 /* nothing at node */
#define OBSTACLE 1 /* obstacle at node */
#define AUV 2 /* vehicle (Autonomous Underwater Vehicle) */
#define ADJACENT 3 /* node adjacent to vehicle */
#define ACTIVE 4 /* detected, non-object, not visited */
#define VISITED 5 /* node has been previously visited */
#define ASPATH 6 /* local path selected by A-Star search */

/* defines states of previous node array nodes */
#define NOTEVAL 0 /* node not evaluated - default state *f
#define FRONTIER 1 /* node placed on agenda (visit list) */
#define CHECKED 2 /* node evaluated and taken off agenda */

/* defines direction of vehicle */
#define NODIR 0
#define N 1
#define NE 2
#define E 3
#define SE 4
#define S 5
#define SW 6
#define W 7
#define NW 8

** ***/

FILE *obstacleifp; /* pointer for receiving obstacles from file */
FILE *missionofp; /* pointer for sending mission to file */
char inobstacle[MAXSTRING]; /* input file name for obstacles */
char outmission(MAXSTRING); /* output file name for mission */
int searchmethod - 0; /* select search method */

106

int searchtype - 0; /* select search type */
int auvstartx - 0; /* starting position for AUV *1
int auvstarty - 0; /* starting position for AUV */
int verbose - FALSE; /* flag to control verbose output */
int storemissiondata - FALSE; /* flag for sending mission data to file */
int aprioriobstacle - FALSE; /* shows obstacles prior to mission viewing *1
int retrievedata - FALSE; /* flag for retrieving obstacle data */
int auvsteps - 0; /* number of graph steps taken by vehicle */
float distrav - 0.0; /* total distance traveled by vehicle */
int obstaclecnt - 0; /* first time visited count */

struct location /* basic structure for location of an entity */
{

int xpos,ypos; /* grid coordinates */};

typedef struct location Location;

struct node /* basic structure of a search area node */

Location grid; /* grid coordinates of node */
int subarea; /* subarea node is located in */
double x,y; /* world position of node */
int dir; /* direction node is looking */
int state; /* status of node */
int visited; /* node previously visited by vehicle flag */
struct node *prior, /* pointer to prior node in subarea */

next; / pointer to next node in subarea */1;
typedef struct node Node;

Node Wld[MAXX][MAXY); /* 2-D array for storing search world nodes */

struct vehicle /* AUV */

Location grid; /* grid coordinates of Vehicle */
int subarea; /* subarea vehicle is located in */
double x,y; /* world position of vehicle */
int dir; /* direction vehicle is looking or traveling */

typedef struct vehicle Vehicle;

Vehicle Auv; /* Autonomous Underwater Vehicle */

struct activenode; /* announce future structure */

struct activesubarea /* structure of subarea in visit list */

int subareanum; /* number of the subarea */
struct activenode *nodelistptr; /* pointer to first node in list */
struct activesubarea *nextsubareaptr; /* pointer to next subarea in list */1;
typedef struct activesubarea Activesubarea;
typedef Activesubarea *SUBAREALINK; /* pointer to Activesubarea *1
SUBAREALINK zh; /* pointer to first subarea in list */

struct activenode /* structure of node in visit list */

int x,y; /* coordinates of node */
struct activenode *nextnodeptr; /* pointer to next node in list */

1;
typedef struct activenode Activenode;
typedef Activenode *NODELINK; /* pointer to Activenode *1

struct asnode /* structure of node in a star search agenda list */

int x,y; /* coordinates of asnode *1

107

float cumcost; /* cum coat from start to asnode *
float criteria; /* sum of cumcost and oval fi..ction *
struct asnode *nextaanodeptr; /* points to next asnode in list *

typedef struct asnode Asnode;
typedef Asnode *ASNODELINK; /* pointer to Asnode *
ASNODELINK ash; /* points to head of list *

struct asvertex /* structure for node in previous node array *

mnt xprev,yprev; /* coordinates of previous vertex *
float cumvertcost; /* cumulative cost from start *
mnt condition; /* state of node */
ASNODELINK ptrtoagenda; /* points to corresponding node in agenda *

typedef struct asvertex Asvertex;
Asvertex Map[I4AXX] [MAXY];

struct newpath 1* structure for path to goal *

mnt xpath,ypath; /* coordinates of nodes in path *

struct newpath *nextnewnode; /* pointer to next newpath node *

typedef struct newpath Newpath;
typedef Newpath *NEWPATHLINK; /* pointer to Newpath *

/* minefield search functions *
void set upo;
void build worldo;
mnt subareao;
void retrieveobstacledata 0;
void start__position 0;
void conduct missiono;
void ladder-searcho;
void perform search routineo;
void analyze~adjacent nodes 0;
mnt node visibleo;
void add to visit listo;
SUBAREAldNK insert subarea 0;
void add -to -nodelist 0;
void delete from visit list 0;
SUBAP.EALINK locate subarea 0;
mnt delete from node list 0;
void delete-from-subarea-list 0;
NODELINK getpriority node from visit listoC;
NODELINK determine best diirecti-on0;
void advance-vehicle-and-deletepatho;

/* A-Star functions */
NEWPATHLINK search-a-staro;
void analyze neighbor -nodes a staro;
void add -to -agenda listoC;
void delete -agenda -node();
ASNODELINK get principle node-and-delete-from agendaoC;
void delete -agenda-list 0;
void mark vertexypath 0;
NEWPATHLIRK createjpath list 0;

/* General functions *
mnt oddo;
float compute -dist 0;
mnt inside-area();
mnt is adjacento;
mnt adjacent_nodeo;
void clean upo;
void test advance();
void print active-listo;

108

void print-agenda -listo;
void printypath list 0;

Title: mine2d.c
Author: Mark Compton
Course: Thesis
Date: 09 Mar 92

Description: This program conducts selected searches of a simulated
minefield for Autonomous Underwater Vehicles.

#include***** <********** *

#include <stdli.h>

#include <math.h>
#include "'mine2d.h'

main 0)

mnt testrun - TRUE;

set-up 0);
conduct mission 0;
clean_upo;

/*SETUP. .Get User inputs *

void set_up()

char answer - I'
char reply - I'
char ack II-

1* Ask if verbose output to screen *
printf("\nDo you wish verbose output to screen?)
scanf ('%cI, &reply);
if (reply -- ly 11 reply -= *Y) verbose - TRUE;
reply II-I'

/* Setup for retrieving obstacle data *
scanf("%c',&answer); /* hack to clear carrage return from buffer *
printf("\n\nObstacle dati may be retrieved from a file. \n\n");
printf("Will you be retrieving data from a file?)
scanf ("%c', &answer);
if (answer -- y' 11 answer-- 'Y')

ret rievedata - TRUE;
printfC"\n\nPlease enter the obstacle input file name: \n");
scanf ('%s", inobstacle);

/* Setup for sending mission data to file *
scanf('%c',&reply); /* hack to clear carrage return from buffer *
printf("\nMisaion data may be saved to a file. \n\n");
printf ("Will you be sending mission data to a file?)
scanf ("%c", &reply);
if (reply -- Iy 11 reply -- 'Y')

storemissiondata - TRUE;
printf("\n\nPlease enter the mission file name: \n");
scanf ("%s", outmission);

109

missionofp - fopen(outMission,"w"); /* open the mission file *

/* Setup for showing obstacles prior to viewing mission playback *
scanf("%c",&ack); /* hack to clear carrage return from buffer */
printf("\nObstacles may be displayed prior to viewing mission. \n\n");
printf ("Do you wish to view obstacles prior to viewing Mission? "1);

scanf ("%c", Lack);
if (ack -- 'y' 11 ack -- 'Y*)

aprioriobstacle - TRUE;

/* Select search method *
printf("\nSelect search method from the following file by typing \n");
printf ("the desired number: ");
printf("\n\nl. Ladder with Sub-area priorities.");
printf("\n2. Ladder without Sub-area priorities. 11);
printf C"\n3. None.\n");
scanf ("%d", &searchmethod);

/* Select search type *1
if(searchmethod -- 1 11 searchmethod -- 2)

printf("\nSelect search type from the following file by typing \n");
prinif ("the desired number:')
printf('\n\nl. A Star.");
printf("\n2. None. ".)

printf("\n3. None. ");
printf ("\n4. Test Advance. \n");
scanf ("%d", Lsearchtype);

/* Select AUV starting position *
printf("\nSelect the start Position for the AUV (integer value): \n");
printf("\nx - ");
scanf ("%9d1", auvstartx);
printf("\ny - "I);

canf ("%d", &auvstarty);

build worido; /* initialize array and node structure *

/*BUILDWORLD. .Builds the world for vehicle operations *

void build-world()

mnt i,J; /* variables for rows and columns *

for(j-O; j < MAXY: 3-3+1)

for(i-O; i < MAXX; i-i+l)

Wld~i)JI.x -=
Wld~iI(jj.y - J;
Wld~iJ[j].3tate - FREE;
Wld~i]H3I.visited - FALSE;
Wld~il [3].grid.xpos - i
Wld[iJ[j).grid.ypos - J;
if (searchmethod - 2)

Wld~iI(jJ.subarea - 1;

else

110

{
Wld[il[jJ.subarea - subarea(i,j);

/* following commented out due to excessive verbose time consumed */
/* if(verbose - TRUE)

printf("\nWorld Node is %d,%d",
Wld[iJ[j].grid.xpos,Wld[i][j].grid.ypos);*/

if (retrievedata -- TRUE)

retrieveobstacledatao; /* fill in obstacles */

start_positiono; /* initiates AUV start position *1

/*SUBAREA..Determines which subarea a node is in *1
/****** ***

int subarea (a,b)

int a,b; /* feed in the grid coordinates */

static int i,j,row,column,subarea;

for (i - 1; i <- SUBY; ++i) /* step thru subarea rows */

for (j - 1; j <- SUBX; ++j) /* step thru subarea columns */

if (b >- (i-l)*SU-YNODES && b < i*SUBYNODES)
4
row -

if (a >- (j-l)*SUBXNODES && a < j*SUBXNODES)

column - J;

if (odd(row))

subarea - ((row-l)*SUBY)+column;

else

subarea - ((row*SUBY)+l)-column;

/* verbose output commented out, too verbose */
/*if(verbose -- TRUE)

printf("\nSubarea is %d",subarea);*/
return subarea;

/****************** ** ****** ** ******** ** **** ** ******** ** **** **** *********

/*RETRIEVEOBSTACLEDATA..Retrieves obstacle data from file if requested *//**
void retrieveobstacledata()

int x,y;

iii

obstacleifp - f open (inobstacle, "r");
1* read obstacle positions from obstacle file *
while(fscanf(obstacleifp, "%d%d", &ix,&iy) !- EON')

obstaclecnt - obstaclecnt + 1;
WldlxJ~yI.state - OBSTACLE;
if (verbose -- TRUE)
printf("\nObstacle at %d, %d",x,y);

/* send obstacle world data to Mission file *
/* note that % indicates world data */
if(storemissiondata -- TRUE && aprioriobstacle -- TRUE)
fprintf(missionofp,"%c %d %d %d %d %f %d %f %f\n"'%',

Wld (x]l .grid.xpos,
Wldfx] (y] .grid.ypos,
Wld~xJ (y).dir,
Wld[x](yJ .state,
distrav,auvsteps, 0.0,0.0);

fClose (obstacleifp);

/*START POSITION. .Defines the starting position of the AUV *

void start__ositionoC

/* read start position from global variable *
Auv.x - Wld[aUVstartx] [auvatarty] .x;
Auv.y - Wld[auvstartx] (auvstarty] .y;
Auv.grid.xpos - Wldfauvstartx] [auvatarty] .grid.xpos;
Auv.grid.ypos - Wld[auvstartx] (auvstarty] .grid.ypos;
Auv.dir - NODIR;
Wldlauvstartxl (auvatartyl .state - AUV;
Mid [auvstartx] [auvstarty] .visited - TRUE;
if (verbose - TRUE)
printf("\nAUV start - %d,%d' Auv.grid.xpos,Auv.grid.ypos);

/* send AUV start position to file */
/* note that $ indicates search path data ~
if (storemissiondata -- TRUE)

fprintf(missionofp,"%c %d %d %d %d %f %d %f %f\n",'$',
Wld~auvstartx] [auvstarty] .grid.xpcs,
Wld[auvstartx] [auvstarty] .grid.ypos,
Wld~auvstartx] [auvstarty] .dir,
Wld[auvstartx] (auvstarty] .state,
distrav,auvsteps,0.0,0.0);

/* clean up old AUV position and send to file *
/* $ represents vehicle data */
fprintf(missionofp,"%c %d %d %d %d %f %d %f %f\n",$',

Wld~auvstartx] [auvstarty] .grid.xpos.
Wld[auvstartxj [auvstarty] .grid.ypos,
NODIR,
VISITED,
distrav,auvsteps,0.0,0.0);

/*CONDUCT MISSION..Initiates selected Mission *

void conduct mission()

112

if(searchmethod -- 1)

laddersearcho;)
if(searchmethod -- 2)

laddersearcho;

if(searchmethod -- 3)

if(verbose - TRUE)
printf("\nThis search method is not yet programmed.\n!');

/********************************** ******** ** ************ ************

/*LADDER SEARCH..Conducts modified ladder search
/* Logic as follows:

1. Look at nodes adjacent to vehicle to determine their status.
a. If nodes have not been visited and are not obstacles and

are not currently on the visit list, add them to the
visit list.

2. Determine the highest priority node.
a. Highest priority node is in list of highest priority sularea.
b. Within highest priority subarea, determine closest node to vehicle.
c. If more than one closest node, choose horizontal over vertical,

right over left, up over down.
3. Move vehicle to priority node.
4. Delete visited node from visit list.
5. Search complete when visit list is empty.*/

****************************** ** **************************

void ladder search 0

float mindistpos,eratio,estepratio;

NODELINK visitnode - NULL; /* priority node to visit from visit list */

analyze adjacentnodes();
visitnode - get prioritynodefrom visit list(0;
if(verbose -- TRUE)
printf("\nThe priority node is %d, %d\n",visitnode->x,visitnode->y);

while (visitnode !- NULL)

perform search routine(visitnode); /* moves AUV to priority node */
analyze adjacent_nodes();
visitnode - get_priority nodefrom_visitlist 0;
if(verbose -- TRUE)
printf("\nThe priority node is %d,%d",visitnode->x,visitnode->y);

if (visitnode -- NULL)

/* compute final statistics *1
mindistpos - ((MAXX * MAXY) + MAXY) - (2 * obstaclecnt);
eratio - mindistpos / distrav;
estepratio - (((MAXX * MAXY) + MAXY) - obstaclecnt)/(auvsteps);
fprintf(missionofp,"%c %d %d %d %d %f %d %f %f\n",'$',

Auv.grid.xpos,Auv.grid.ypos, O,AUV,
distrav, auvsteps,
eratioestepratio);

printf("\nSEARCH COMPLETE!!\n");

113

/*PERFORMSEAR~CHROUTINE.. This selects the type of search routine used to*/
/*go to the selected goal node, conducts search and returns path

void perform search routine (goalnodeptr)

NODELINK goalnodeptr; 1* node to be visited from AUV current posit *

NEWPATHLINK pathlistptr; /* points to list giving vehicle path *

if (searchtype -- 1)

if (verbose -- TRUE)
printf("\n\nBeginning A-star search to next goal node\n\n");
1* determine path to goal from AUV current position with A-star *
pathlistptr - search_as3tar(goalnodeptr);
/* move vehicle along path, replan if obstacle encountered *
/* and delete path list when finished */
advance vehicle and delete-path(pathlistptr);
free (paihlistptri);
if (verbose -- TRUE)
printf('\n\nEnding A-star search ... reached this goal\n\n");

if (searchtype -=2) printf("\nNot a usable search!!\n");
if (searchtype -- 3) printf('\nNot a usable aearch!!\n");
if (searchtype ==4)

if (verbose - TRUE)
printf('\nThe search routine is test advance\n");

test-advance (goalnodeptr);

/*ANALYZE -ADJACENTNODES. .Determine status of nodes adjacent to AUV *
/*if nodes is not an obstacle and has not been visited then add it to *
/*the visit list

void analyze-adjacent-nodes()

/* NORTH *
/* check adjacent node *
if(Wld(Auv.grid.xposl [Auv.grid.ypos+11 .state - OBSTACLE 6

storemissiondata - TRUE)

fprintf(missionofp,"%c %d %d %d %d %f %d %f %f\n'%',
Wld(Auv.grid.xposj (Auv.grid.ypos+1J .grid.xpos,
Wld(Auv.grid.xposj (Auv.grid.ypos+1J .grid.ypos,
Wld[Auv.grid.XP03] (Auv.grid.ypos+1J .dir,
Wld(Auv.grid.xpos) EAuv.grid.ypos+l] .state,
distrav, auvsteps, 0. 0,0.0) ;

if((node visible(Auv.grid.xpos,Auv.grid.ypos+1) - TRUE) £
(Wld[Auv.grid.XPosj [Auv.grid.ypos+1] .visited -- FALSE) &
(Wld(Auv.grid.xpos] (Auv.grid.ypos+1] .state !-ACTIVE) &
(Wld(Auv.grid.xposJ fAuv.grid.yp0s+1] .state !-OBSTACLE))

if (verbose -- TRUE)
printf("\nAnalyzing adjacent node %d,%d',

Auv.grid.xpos,Auv.grid.YPos+1);
add to visit-list (Auv.grid.xpos,Auv.grid.ypos+l);

114

/* NORTHWEST *
/* check adjacent node *
if(Wld[Auv.grid.xpos-l] CAuv.grid.ypos+l] .state -- OBSTACLE £

storemissiondata -- TRUE)

fprintf(missionofp,'%c %d %d %d %d %f %d %f %f\n",'%',
WldCAuv.grid.xpo3-l] [Auv.grid.ypos+l] .grid.xpos,
Wld(Auv.grid.xpos-l] [Auv.grid.ypos+lJ .grid.ypos,
Wld(Auv.grid.xpos-l] [Auv.grid.ypos+1] .dir,
Wld[Auv.grid.xpos-1] [Auv.grid.ypos+lJ .state,
distrav,auvsteps, 0.0,0.0);

if((node visible(Auv.grid.xpos-l,Auv.grid.ypos+1) -- TRUE) 66
(Wld[Auv.grid.XPos-l] [Auv.grid.ypos+l] .Visited - FALSE) &
(WldCAuv.grid.xpos-l) (Auv.grid.ypos+lJ .state I-ACTIVE) £
CWld[Auv.grid.xpos-l] [Auv.grid.ypos+1J .state !-OBSTACLE))

if (verbose -- TRUE)
printf(C\nAnalyzing adjacent node %d,%d",

Auv.grid.xpos-l,Auv.grid.ypos+l);
add-to-visit-list (Auv.grid.xpos-l,Auv.grid.ypos+l);

/*NODE_-VISIBLE.. Determines if a node adjacent to AUV is inside of the *
/*search area and is available

mnt node-visibleCx, y)

int x,y;

if((inside -area(x,y)) &&(Wld~x](y].state -- FREE))
return TRUE;

else
return FALSE;

/*ADD TO VISIT LIST. .Adds node to Visit list

void add-to-visit_list (XPos,ypos)

mnt xpos,ypos;

SUBAREALINK subareaheadptr - NULL; /* temp ptr to first subarea *
SUBAP.EALINK currsubareaptr - NULL; /* temp ptr to current subarea *
SUBAREALINK subareaofinterest - NULL; /* ptr to subarea of interest *
mnt currentsubarea; /* indicates subarea of interest number *

currentsubarea - Wld~xpos)[yposj.subarea; /* subarea of interest *
Wld~xposj Cypos] .state - ACTIVE;
/* send active node to output file *
if (storemissiondata -- TRUE)

115

fprintf(missionofp,"%c %d %d %d %d %f %d %f %f\n",'S',
Wid~xpos) [ypos] .grid.xpos,
Wld[xposi fypos] .grid.ypos,
NODIR,
Wld(xposl (ypos] .state,
distrav, auvsteps, 0.0, 0.0) ;

if (zh - NULL) /* subarea list is empty so create subarea and first node *

subareaheadptr - (Activesubarea*) malloc (sizeof (Activesubarea));
zh - subareaheadptr; /* attach start pointer to first subarea record *
3ubareaheadptr->subareanum =currentsubarea;

subareaheadptr->nodelistptr -(Activenode*) malloc (sizeof(Activenode));
subareaheadptr->nodelistptr->x - ,cpo3;
subareaheadptr->nodelistptr->y - ypos;
subareaheadptr->nodelistptr->nextnodeptr - NULL;
subareaneadptr->nextsubareaptr - NULL;
if (verbose -- TRUE)
printf('\nAdding first node %d,%d and subarea %d to visit list",

xpos, ypos, currentsubarea);

else /* there exist subareas in linked list *

subareaofinterest - insert subarea (currentsubarea);
add-to-node-list (subareaofinterest,XPOS,ypos);

/*INSERTSUBAREA.. Inserts subarea in proper place in subarea list and *
/*return-$ apointer to that subarea *

SUBAREALINK insert-subarea (currentsubarea)

int currentsubarea;

SUBAREALINK currsubareaptr,prevsubareaptr; /* current and previous pointers *
SUBAP.EALINK tempptr;

currsubareaptr - zh;
prevsubareaptr - currsubareaptr;

1* cycle through subareas to place prioritized subarea of interest *
while (currsubareaptr !- NULL)

/* equivalent subarea priority *
if (currsubareaptr->subareanum -- currentsubarea)

return currsubareaptr;

/* advance currentsubarea pointer ~
currsubareaptr - currsubareaptr->nextsubareaptr;
/* highest priority subarea in list */
if (zh->subareanum > currentsubarea 44 currsubareaptr -- NULL)

t~inpptr-(Activesubarea*)malloc(sl ?eof (Activesubarea));
tempptr->subareanum - currentsubare a:
tempptr->nextsubareaptr - zh;
tempptr->nodelistptr - NULL;
zh - tempptr;
if (verbose - TRUE)
printf("\nAdding subarea %d to visit list",currentsubarea);

return tempptr;

116

1* lowest priority subarea in list */
if (prevaubareaptr->subareanum < currentsubarea && currsubareaptr -- NULL)

tempptr-(Activesubarea*)malloc (sizeof (Activesubarea));
tempptr->subareanum - current subarea;
tempptr->nextsubareaptr - currsubareaptr;
tempptr->nodelistptr - NULL;
prevaubareapt r->nextsubareaptr - tempptr;
if (verbose -- TRUE)
printf("\nAdding subarea %d to visit list",currentsubarea);

return ternpptr;

/* not highest or lowest priority subarea in list *
if (preVsubareaptr->subareanum < currentsubarea &

currsubareaptr->subareanum > currentsubarea)

tempptr-(Activesubarea*)malloc (sizeof (Activesubarea));
tempptr->subareanum - currentsubarea;
tempptr->nextsubareaptr = currsubareaptr;
tempptr->nodelistptr - NULL;
prevsubareaptr->nextsubareaptr - tempptr;*
if (verbose - TRUE)
printf("\nAddiag~ subarea %d to visit list",currentsubarea);

return tempptr;

/* priority location not found, advance pointers for while loop *
prevsubareaptr - currsubareaptr;

/*ADD TO NODE LIST. .Places a node at the head of a node list

void add-to-node-list Csubareaofint~xposit,yposit)

SUBAREALINK subareaofint;
mnt xposit~yposit;

NO)FLINK temptr; /* temp ptr to new node *

temptr- (Activenode*)malloc (sizeof (Activenode));
temptr->x - XP03it;
temptr->y - yposit;
temptr->nextnodeptr = subareaofint->nodelistptr;
subareaofint->nodelistptr - temptr;
if (verbose -- TRUE)

printfC"\nAdding node %d,%d to visit list",Xp0sit,yp03it);

/*DELETE FROM VISIT LIST.. Deletes a node and subarea from visit list

void delete-from-visit-list (xpos,ypos)

mnt xposypos;

SUBAREALINK subareaheadptr - NULL; /* temp ptr to first subarea *
SUBARE.ALINK currsubareaptr - NULL; /* temp ptr to current subarea *
SUBAREALINK subareaofinterest - NULL; /* ptr to subarea of interest *

117

nt, currentaubarea; /* indicates subarea of interest number i

int emnptysubarea - FALSE; /* flag indicating empty subarea i

currentsubarea - Wld[XPos1[yposl.subarea; /* subarea of interest ~
if (zh !- NULL)

subareaofinterest - locate subarea (currentsubarea);
emptysubarea - delete from node-list (subareaofinterest,XPOs,yp0s);
if (emptysubarea - TRUE)-

delete-from-subarea-list (currentsubarea);

else

printf("\nERROR! Visit list is empty! \n");

/*LOCATESUBAREA.. Points to the subarea of interest *

SUBAREALINK locate-subarea (currentsubarea)

mnt current subarea;

SUBAREALINK tempptr;

tempptr -- zh;
while (tempptr !- NULL)

if (tempptr->subareanum -- currentsubarea)

if (verbose -- TRUE)
printf("\nSubarea of interest is subarea %d',tempptr->subareanum);

return tempptr;

tempptr - tempptr->nextsubareaptr;

/*DELETE FROM NODE LIST. .Deletes a node from a list i

int delete-from node list (subarea of interest,xpos,ypos)

SUBARE.ALINK subarea-of-interest;
int xpos,ypos;

NODELINK tempptr; /* temp ptr to new node i
NODELIN(previousptr; /* temp ptr to previous node *

tempptr - subarea of interest->nodelistptr;
/* if node is fir-it in subarea's node list i
if (tempptr->x -- xpos && tempptr->y -- ypos)

previousptr - tempptr;
subarea of interest->nodelistptr - tempptr->nextnodeptr;
tempptr->nextnodeptr - NULL;
f ree (temppt r) ;
if (verbose -- TRUE)
printf('\nDeleting node %d,%d from visit list"x,X3ypos);

if (subarea of interest->nodelistptr -- NULL) /* no more nodes in list *

118

return TRUE;

/* if node is not first in subarea of interest ~
/* advance ptr into node list to second node *
tempptr - tempptr->nextnodeptr;
previousptr - subarea-of-interest->nodelistptr;

while (tempptr !- NULL)

if (tempptr->x -- xpos 4& tempptr->y - ypos)

previousptr->nextnodeptr - tempptr->nextnodeptr;
tempptr->nextnodeptr - NULL;
free (tempptz);
if (verbose -- TRUE)
printf('\nDeleting node %d,%d from visit list",xpos,ypos);

previousptr - previousptr->nextnodeptr;
tempptr - tempptr->nextnodeptr;

/*DELETE FROM SUBAREA LIST.. Deletes a subarea from a list

void delete-from-subarea-list (currentsubarea)

mnt currentsubarea;

SUBAREALINK prevsubarea, currsubarea;

currsubarea - zh;
/* deleting first subarea in list *
if (currsubarea->subareanum -- currentsubarea)

zh - currsubarea->nextsubareaptr;
curraubarea->nextsubareaptr - NULL;
free (currsubarea);
if (verbose -- TRUE)
printf("\nDeleting subarea %d from visit list',currentsubarea);

/* deleting some other subarea in list *
prevsubarea - currsubarea;
currsubarea - currsubarea->nextsubareaptr;
while (currsubarea !- NULL)

if (currsubarea->subareanum - currentsubarea)

prevsubarea->nextsubareaptr - currsubarea->nextsubareaptr;
currsubarea->nextsubareaptr - NULL;
free (currsubarea);
if (verbose -- TRUE)
printf("\nDeieting subarea %d from visit list",currentsubarea);

curraubarea - currsubarea->neXtsubareaptr;
prevaubarea - prevaubarea ->next suba reapt r;

/*GET PRIORITYNODEFROMVISITLIST. .Locates highest priority node in *
/*visit list based on linear distance then location heuristics

119

NODELINK getpriority_npode-from-visit-list()

float best -dist - 1000.0, /* best overall distance at given point *
dist; 1* distance to node being analyzed *

NODELINK best node, /* points to best priority node *
tempptr; /* points to node being analyzed *

/* search complete *
if (zh -- NULL)

return NULL;

tempptr - zh->nodelistptr;
while (tempptr !- NULL)

dist - compute dist (Auv.grid.xpos,tempptr->x,
Auv.grid.ypos,tempptr->y);

if (dist < best-dist)

best dist - dist;
best-node - tempptr;

if (dist -- best dist)

best-node - determine best direction(best-node,tempptr);

tempptr - tempptr->nextnodeptr;

if (verbose - TRUE)
printf.f"\nPriority node pointed at in visit list is %d,%d",

best node->x,best-node->y);
return best-node;

/*DETERM4INEBESTDIRECTION. Determines which node to go to among nodes *
/*of equal daistance. *

NODELINK determine-best-direction (bestnode,testnode)

NODELINK bestnode, testnode;

if (bestnode->y > Auv.grid.ypos && testnode->y - Auv.grid.ypos 11I
bestnode->y < Auv.grid.ypos && testnode->y - Auv.grid.ypos)

return testnode;

if (bestnode->y -- Auv.grid.ypos £&testnode->y > Auv.grid.ypos I
bestnode->y -- Auv.grid.ypos &&testnode->y < Auv.grid.ypos)

return bestnode;

if Cbestnode->y > Auv.grid.ypos ~&testnode->y > Auv.grid.ypos 11
bestnode->y > Auv.grid.ypos &&testnode->y < Auv.grid.ypos 11
bestnode->y -- Auv.grid.ypos i&testnode->y -- Auv.grid-yposl I

bestnode->y < Auv.grid.ypos i~testnode->y > Auv.grid.ypos I11
bestnode->v < Auv.grid.ypos £&testnode->y < Auv.grid.ypos)

if (bestnode->x > testnode->x)

if (verbose -- TRUE)
printf("\nBest direction is to node %d,%d",bestnode->x,bestnode->y);

120

return bestnode;

if (bestnode->x < testnode->x 11I bestnode->x -- testnode->x)

if (verbose -- TRUE)
printf('\nBest direction is to node %d,%d',testnode->x,testnode->y);

return testnode;

/*ADVANCEVEHICLEANDDELETEPATH.. Given a pathlist, advances vehicle *
/*along path and deletes path. If obstacle encountered, stops and
/*reinitiates new path search

void advance-vehicle-and-deletepath(pathlist)

NEWPATHLINK pathlist;

float tempdist;
NEWPATHLIN(temppathptr;

while(pathlist !- NULL)

1compute cumulative distance traveled *
tempd4-st -compute dist (Auv.grid.xpos,pathlist->xpath,

Auv .grid. ypos ,pathlist->ypath);
distrav -distrav + tempdist;
/* compute steps taken by vehicle *
auvsteps - auvsteps + 1;

/*clean up old AUV position *
if (verbose -- TRUE) printf("\n Clean up old AUV position");
Wld[Auv.grid.xpos] (Auv.grid.yposJ .state - VISITED;
Wld[Auv.grid.xpos] [Auv.grid.yposJ .visited - TRUE;
Map (Auv.grid.xpos] [Auv.grid.ypos] .condition -- NOTEVAL;
/* send updated node data from former AUV position to file *
/ * $ represents vehicle data *
if (storemissiondata -- TRUE)

fprintf(missionofp,"%c %d %d %d %d %f %d %f %f\n,$',
Wld[Auv.grid.xpos] [Auv.grid.ypos] .grid.xpos.
WldEAuv.grid.xpos] iAuv.grid.ypos] .grid.ypos,
Wld(Auv.grid.xpos] (Auv.grid.ypos) .dir,
Wld(Auv.grid.xpos] (Auv.grid.ypos] .state,
distrav,auvsteps, 0.0, 0.0) ;

/* update AUV position and status *
if (verbose -- TRUE) printf('\n Update AUV Position");
if (verbose -- TRUE) printf("\n Pathlist position is %d,%d",

pathlist->xpath, pathlist->ypath);
Auv.grid.xpos - pathlist->xpath;
Auv.grid.ypos - pathlist->ypath;
Auv.x - pathlist->xpath;
Auv.y - pathlist->ypath;
Wldtpathli3t->xpath] [pathlist->ypath] .state - AUV;
delete from visit list (pathlist->xpath, pathlist->ypath);
if (verbose Z- TRUE)
printf("\nAUV position - dn"

Wldtpathlist->xpath] [pathlist->ypathj .grid.xpos,
Wld~pathlist->xpath] [pathlist->ypath] .grid.ypos);

/* send updated AUV information to file *
if(storemissiondata -- TRUE)
/* $ represents vehicle data *

121

fprintf(zuissionofp,"%tc %d %d 14d %d %f %d %f %~"''
Wld[pathlist->xpath] (pathlist->ypath) .grid.xpos,
Wid (pathlist->xpathl [pathlist->ypath] .grid.ypos,
Wid Cpathlist->xpath] (pathlist->ypath] .dir,
Wld [pathlist->xpath] [pathlist->ypath].state,
distrav,auvsteps. 0.0, 0.0) ;

temppathptr - pathlist;
pathli3t - pathlist->nextnewnode;
temppathptr->nextnewnode - NULL;
free (temppathptr);

/*SEAR~CHASTAR.. This routine performs the optimal path
I*A..Star search and returns a pointer to path list

NEWPATHLINK search-a-star(goalnodeptr)

NODELINK goalnodeptr;

ASNODELINK currentasnodeptr; 1* ptr to asnode of interest *
ASNODELINK previousasnodeptr; /* ptr to previous asnode of interest *
NEWPATHLINK pathlistptr; /* ptr to desired path list */
Asnode auvnode; /* temporary holder for auv evaluation posit *
mnt i,j; /* for initializing vertex world *

/* initialize vertex world *
for (J-0; J<MAXY; ++j)

for (i-0; i<MAXX; ++i)

Map~ijlj.xprev - 0;
Map[i)[jl.yprev - 0;
Map[i][j].cumvertCost - 0.0;
Map~i][j].condition - NOTEVAL;
Map(i](jJ.ptrtoagenda - NULL;
/* works so commented out to save time ~
/* if (verbose -- TRUE)
printf("\n Vertex node being initialized is %d,%d\n",i,j); *

/* initialize AUV start position *
/* makes sure not reanalyzed in algorithm ~
Map[Auv.grid.xpos] [Auv.grid.ypos] .condition -CHECKED;
/* beginning with AUV current position .. *
currentasnodeptr - (Asnode*) malloc (sizeof (Asnode));
currentasnodept r->x - Auv .grid. xpos;
currentasnodeptr->y - Auv .grid.ypos;
currentasnodeptr->cumcost -0.0;

currentasnodeptr->criteria =0.0;

currentasnodept r->nextasnodeptr - NULL;
/* assign pointer to previous asnode *
previousasnodeptr - currentasnodeptr;
if (verbose -- TRUE)

printf("\n AUV vertex node being initialized is at %d,%d",
Auv.grid.XPos,Auv.grid.ypos);

It compute costs and criteria and add to agenda as appropriate *
/* note, if agenda is empty, use AUV position */

analyze neighbor nodes a star(currentasnodeptr,goalnodeptr);
print agenda listo;

I' while agenda not empty, move toward goal *
while (ash !- NULL)

122

/* point to principle vertex and delete it from agenda */
currentasnodeptr - get_principle-node-and-delete-from agenda 0;
/* check for goal */
if (currentasnodeptr->x ==goalnodeptr->x £

currentasnodeptr->y -- goalnodeptr->y)

delete agenda_list 0; /* cleans up old agenda *
pathlistptr - create_path list (currentasnodeptr);/* builds path list *
free (currentasnodeptr);
return pathlistptr;

/* compute costs and criteria and add to agenda as appropriate *
prev'ousasnodeptr = currentasnodeptr;
analyze neighbor-nodes-a-star (currentasnodeptr, goalnodeptr);

/*ANALYZE_-NEIGHBOR_-NODES_-A_-STAR.. Looks at neighbor nodes to determine *
/*status, computes costs and criteria and adds nodes to agenda

void analyze-neighbor-nodes-a-star(currasnodeptr,goalptr)

ASNODELIN(currasnodept r;
NODELINK goalptr;

1* NORTH *
/* check neighbor node *

/* within confines of world ~
if (inside -area (currasnodeptr->x, currasnodeptr->y+l) &

/* and not an obstacle */
(Wldfcurrasnodeptr->x] (currasnodeptr->y+l] .state !OBSTACLE) &

/* and either visited or is the goal or is neighbor to the AUV *

((Wld~currasnodeptr->x] (currasnodeptr->y+l] .visited - TRUE) 11
(currasnodeptr->x - goalptr->x && currasnodeptr->y+l =-goalptr->y) I
(adjacent-node (Auv.grid.xpos,Auv.grid.ypos,

currasnodeptr->x, currasnoe~eptr->y+1))) &
/* and is either on the frontier or has not been evaluated by a-star *

((Map~currasnodeptr->x] [currasnodeptr->y+lJ .condition -=FRONTIER) 11
(Map (currasnodeptr->x] (currasnodeptr->y+l] .condition -- NOTEVAL)))

if (verbose -- TRUE)
printf("\n Analyzing neighbor node in Vertex World %d,%d",

currasnodeptr->x, currasnodeptr->y+ 1);
add-to-agenda_list (currasnodeptr->x, currasnodeptr->y,

currasnodeptr->x, currasnodeptr->y+l, goalptr);

/* NORTHWEST *
/* check neighbor node *
if (inside -area (currasnodeptr->x-l, currasnodeptr->y+l) ~

(Wldtcurrasnodeptr->x-l] jcurrasnodeptr->y+l] .state I-OBSTACLE)
((Wld~currasnodeptr->x-l] (currasnodeptr->y+l] .visited -- TRUE) 1
(currasnodeptr->x-l - goalptr->x 6& currasnodeptr->y+l -- goalptr->y) I
(adjacent node (Auv.grid.xpos,Auv.grid.ypcs,

currasnodeptr->x-l, currasnodeptr->y+l))) ~
((Map~currasnodeptr->x-lJ (currasnodeptr->y+l] .condition -- FRONTIER) 11
(Map[currasnodeptr->x-l] (currasnodeptr->y+l] .condition -- NOTEVAL)))

if (verbose -- TRUE)
printf("\n Analyzing neighbor node in Vertex World %d,%d",

123

currasnodeptr->x-l,currasnodeptr->y+l);
addto-agenda-list(currasnodeptr->x,currasnodeptr->y,

currasnodeptr->x-l,currasnodeptr->y+l,goalptr);

/*ADD TO AGENDALIST..Adds a vertex node to the agenda list ordered by */
/*criteria value from lowest to highest *1

****** ** ******** ****** ********** **** ****** ** ****** ** ****** **********

void addtoagendalist (curx,cury,nextx,nexty,goalasptr)

int curx,cury, /* position adding from */
nextx,nexty; /* position being added */

NODELINK goalasptr; /* points to the goal */

ASNODELINK tempnxtptr, /* temp ptr to next node being analyzed */
tempcurptr; /* temp ptr to current reference node */

ASNODELINK curragendaptr, /* current agenda location */
prevagendaptr; /* keeps track of previous agenda location */

curragendaptr - ash; /* assign current pointer to head of agenda */
prevagendaptr - curragendaptr;
/* allocate memory for node being analyzed */
tempnxtptr - (Asnode*)malloc(sizeof(Asnode));
tempnxtptr->x - nextx;
tempnxtptr->y - nexty;
/* allocate memory for reference node */
tempcurptr - (Asnode*)malloc(sizeof(Asnode));
tempcurptr->x - curx;
tempcurptr->y - cury;
if (verbose -- TRUE)
printf("\n Reference cum cost is %f",Map[curx)[cury.cumvertcost);

/* compute cumulative cost and criteria value */
/* compute the cumulative cost to next node */
tempnxtptr->cumcost - Map curx] (cury].cumvertcost +

compute dist(curx, nextx,
cury,nexty);

if (verbose -- TRUE)
printf("\n Compute distance between NEXT VERTEX and GOAL -criteria-");

/* compute criteria value as sum of cumcost and distance to goal */
tempnxtptr->criteria - tempnxtptr->cumcost +

compute dist(nextx, goalasptr->x,
nexty,goalasptr->y);

if (verbose -- TRUE)
printf("\n Criteria is %f",tempnxtptr->criteria);

tempnxtptr->nextasnodeptr - NULL;
if (verbose -- TRUE)

printf("\n Compute distance between");
printf(" CURRENT VERTEX and NEXT VERTEX -cumcost-");

/* if a frontier node, check to see if criteria is less */
/* note that a frontier node is currently on the agenda *1
/* if next node criteria value is less, get rid of old one and */
/* add next node to agenda list */
/* else, clean up and do nothing */
if (Map(tempnxtptr->x][tempnxtptr->y].condition -- FRONTIER)

if (verbose -- TRUE)

printf("\n Analyzing Frontier Node %d,%d",nextx,nexty);
printf("\n Current Criteria is %f",

Map[tempnxtptr->x] [tempnxtptr->y].ptrtoagenda->criteria);
printf("\n Next Criteria is %f',tempnxtptr->criteria);

124

if (tempnxtptr->criteria <
Map (tempnxtptr->x] [tempnxtptr->y] .ptrtoagenda->criteria)

if (verbose - TRUE)
printf("\n Replacing frontier node %d,%d",

tempnxtptr->x, tempnxtptr->y);
delete-agenda-noee(Map[tempnxtptr->x] [tempnxtptr->y] .ptrtoagenda);
Map (tempnxtptr->xj [tempnxtptr->y] .ptrtoagenda - tempnxtptr;
Map (tempnxtptr->x] (tempnxtptr->y] .condition - FRONTIER;
Map (tempnxtptr->x] (tempnxtptr->y] cumvertcost - tempnxtptr->cumcost;

else

free (tempnxtptr);
if (verbose -- TRUE)
printf("\n Not Replacing frontier node %d,%d",

tempnxtptr->x, tempnxtptr->y);
return;

/* if node is not even on the agenda then change its state and add *
/* it to agenda list */
if (Map [tempnxtptr->x] [tempnxtptr->y] .condition -- NOTEVAL)

Map (tempnxtptr->x] (tempnxtptr->y] .condition - FRONTIER;
Map (tempnxtptr->x] (tempnxtptr->y] .cumvertcost - tempnxtptr->cumcost;
if (verbose -- TRUE)
printf('\n Changing Node %d,%d to FRONTIER",

tempnxtptr->x, tempnxtptr->y);

/* add to list ordered by criteria value *
if (ash !- NULL)

if (verbose -- TRUE)
printf("\n Adding node %d,%d to agenda",tempnxtptr->x,tempnxtptr->y);

/* cycle through nodes in list *
while (curragendaptr !- NULL)

/* lowest criteria value in list *
if (tempnxtptr->criteria < ash->criteria)

/* annotate previous node array *
mark -vertexyath(tempcurptr,tempnxtptr);
if (verbose -- TRUJE)

printf("\n Inserting vertex %d,%d at head of agenda list",
tempnxtptr->x, tempnxtptr->y);

tempnxtptr->nextasnodeptr - ash;
ash - tempnxtptr;
/* clean up pointers *
free (tempcurptr) ;
tempnxtptr - NULL;
tempcurptr - NULL;
return;

/* advance pointer to second node on agenda *
curragendaptr - curragendaptr->nextasnodeptr;
/* highest criteria value in list */
/* not lowest criteria value in list *
if (curragendaptr -- NULL 11I

(tempnxtptr->criteria <- curragendaptr->criteria 64
tempnxtptr->criteria >- prevagendaptr->criteria))

/* annotate previous node array *
mark -vertexyath(tempcurptr,tempnxtptr);
if (verbose -- TRUE)
printf("\n Inserting vertex %d,%d within agenda list",

tempnxtptr->x, tempnxtptr->y);

125

tempnxtptr->nextasnodeptr - curragendaptr;
prevagendaptr->nextasnodept r - tempnxtptr;
/* clean up pointers *
free (tempcurptr);
tempnxtptr - NULL;
tempcurptr - NULL;
return;

prevagendaptr - prevagendaptr->nextasnodeptr;

/* agenda list is empty *
if (ash -- NULL)

mark vertexjpath(tempcurptr,tempnxtptr);
if (verbose - TRUE)
printf("\n Agenda list is empty. Inserting %d,%d "

tempnxtptr->x, tempnxtptr->y);
ash - tempnxtptr; /* assign head ptr to first node in list *
/* clean up pointers *
free (tempcurptr);
tempnxtptr - NULL;
tempcurptr - NULL;

/*DELETE AGENDA NODE.. Locates node in agenda list and deletes *

void delete agenda-node (agendapointer)

ASNODELIN(agendapointer;

ASNODELINK curptr, prevptr;

curptr -ash; /* point to top of list *
prevptr -curptr;

/* if first node on agenda list *
if (ash -- agendapointer)

ash - ash->nextasnodeptr;
free (curptr);
return;

/* not first node on agenda list *
while (curptr !- NULL 11 curptr agendapointer)

curptr - curptr->nextasnodeptr;
if (curptr -- agendapointer)

prevptr->nextasnodeptr - curptr->nextasnodeptr;
free (curptr);
return;

prevptr - curptr;

return;

/*GET PRINCIPLENODEANDDELETEFROM AGENDA. .Points to the principle
/*node in agenda, returns it, and deletes it from the agenda

ASNODELINK getyrinciple-node-and-delete-from_agenda()

126

ASNODELINK principlenodeptr;

if (ash -- NULL)
printf("\n Agenda is empty, cannot get principle node");

principlenodeptr - ash;
ash - principlenodeptr->nextasnodeptr;
principlenodeptr->nextasnodeptr - NULL;
Map Eprinciplenodeptr->x] [principlenodeptr->y . condition = CHECKED;
if (verbose -- TRUE)
printf("\n Getting principle node %d,%d from agenda list",

principlenodeptr->x, principlenodeptr->y);
return principlenodeptr;

/*DELETE AGENDA LIST.. Deletes entire agenda list to clean up *

void delete-agenda-list()

ASNODELINK tempptr;

if (verbose - TRUE)
printf("\n Goal reached, deleting remaining agenda list");

while(ash !NULL)

tempptr -ash;
ash = ash->nextasnodeptr;
tempptr->nextasnodeptr = NULL;
if(verbose - TRUE) printf("\n Deleting vertex %d,%d from agenda list",

tempptr->x, tempptr->y);
free (temppt r);

/*MARKIVERTEXPATH. .Annotates previous node in as array node

void mark-vertex-path (prevasnode,currentasnode)

ASNODELINK prevasnode, /* where the current node came from *
currentasnode; 1* current node *

if (verbose - TRUE)
printf("\n Vertex array position %d,%d.prev gets %d,%d",

currentasnode->x, currentasnode->y, prevasnode->x, prevasnode->y);
/* mark where the current node came from */
Map(currentasnode->x] (currentasnode->y] .xprev = prevasnode->x;
Map(currentasnode->x] [currentasnode->y] .yprev - prevasnode->y;
/* points to current node on the agenda */
Map (currentasnode->x] (currentasnode->y] .ptrtoagenda - currentasnode;

/*CREATE PATH LIST. .Creates and builds a path to goal list
/*head of list is first node after vehicle, last rode is goal

NEWPATHLINK create-path list (goalptr)

127

ASNODELINK goalptr;

NEWPATHLINK pthd, newptr;

if (verbose - TRUE)
printf("\n Goal reached, creating path list as follows:");

/* put goal position in list */
newptr - (Newpath*)malloc (sizeof (Newpath));
newptr->xpath - goalptr->x;
newptr->ypath - goalptr->y;
newptr->nextnewnode - NULL;
if (storemjissiondata -- TRUE)

fprintf(Missionofp,"%c %d %d %d %d %f %d %f %f\n",$',
newptr->xpath,
newptr->ypath,
0,
6,
distrav, auvsteps, 0.0,0.0);

pthd - newptr;
if (verbose -- TRUE)

printf("\n %d,%d",newptr->xpath,newptr->ypath);
while (C (Map~newptr->xpath] (newptr->ypathl .xprev !-Auv.grid.xpos) IfI

(Mapfnewptr->xpath] [newptr->ypath] .yprev I-Auv.grid.ypos)))

newptr - (Newpath*)malloc(sizeof(Newpath));
newpt r->xpath - Map [pthd->xpath] [pthd->ypath . xprev;
newptr->ypath - Map(pthd->xpath] [pthd->ypathl .yprev;
newptr->nextnewnode - pthd;
if (storemissiondata -- TRUE)

fprintf(missionofp,"%c %d %d %d %d %f %d %f %f\n,'$',
newptr->xpath,
newptr->ypath,
0,
6,
distrav, auvsteps, 0. 0,0. 0)

pthd - newptr;
if (verbose -- TRUE)
printf ("\nPath %d, %d', newptr->xpath, newptr->ypath);

return pthd;

/*ODD .. Determines if a value is odd or even *

mnt odd(value)

mnt value;

if (value % 2 -- 0)
return EVEN;

else
return ODD;

/*COMUTE DIST. .Determines the distance between two nodes

float compute dist (Xloc,XPOs,yloc,ypos)

int xloc,xpos,yloc,ypos;

128

double dist;

dist - sqrt((double) (((xloc - xpos)*(xloc - xpos)) +
((yloc - ypos)*(yloc - ypos))));

if(verbose -- TRUE)
printf("\nThe distance between %d,%d and node %d,%d is %f",

xloc,yloc,xposypos, (float)dist);
return (float)dist;

/** ************ **** ** ****** ** ********** ** ****** ************** **********

/*INSIDE AREA..Determines if a node is inside the search area */

int insidearea (x,y)

int x,y;

if (x >- 0 && x < MAXX && y >= 0 && y < MAXY)
return TRUE;

else
return FALSE;

/********************************** ***

/*IS ADJACENT..Determine if a node is adjacent to the vehicle

int is adjacent(a,b,c)

int a,b,c; /* node location being analyzed */

int e,f; /* holder for vehicle position */

e - Auv.grid.xpos;
f - Auv.grid.ypos;
if((a <- e+l 66 a >- e-1) 66

(b <- f+l 66 b >- f-1) &&
(c !- AUV))

return TRUE;

else

return FALSE;

/**/*
/*ADJACENT NODE..Returns true of one node is adjacent to the other

int adjacent_node(x,y,nextx,nexty)

int x,y,nextx,nexty;

if((nextx <- x+l 66 rextx >- x-1) 66
(nexty <- y+l 66 nexty >- y-1))

return TRUE;
else

return FALSE;

129

/*CIFM UP. .Clean up after running program ~

void clean-up()

print active listo;
if (S~oremi3siiondata -- TRUE)
fcloe (miss ionofp);

/*TEST ADVANCE.. Test routine for advancing AUV through world. Does not *
/*currintly employ a-star or other search.

void test-advance(testnode)

NODELINK te stnode;

/* clean up old AUV position *
Wld(Auv.grid.xpos] [Auv.grid.ypos] .state - VISITED;
Wld(Auv.grid.xpos] EAuv.grid.yposl .visited - TRUE;
/* send updated node data from former AUV position to file *
/* $ represents vehicle data *
if (storemissiondata -- TRUE)

fprintf(missionofp,"%c %d %d %d %d %f %d %f %f\n",'$',
Wld(Auv.grid.xpos] [Auv.grid.ypos] .grid.xpos.
WldEAuv.grid.xposl (Auv.grid.ypos] .grid.ypos,
Wld(Auv.grid.xpos] [Auv.grid.ypos] .dir,
Wld(Auv.grid.xpos] EAuv.grid.ypos] .state,
distrav,auvsteps,0.0,0.0);

/* update AUV position and status *
Auv.grid.xpos = testnode->x;
Auv.grid.ypos - testnode->y;
Auv.x = testnode->x;
Auv.y = testnode->y;
Wldltestnode->x] (testnode->y] .state - AUV;
if (verbose -- TRUE)
printf('\nAUV position = %d.%d',Wldttestnode->xl [testnode->y] .grid.xpos.

Wld[testnode->xj ftestnode->y] .grid.ypos);
/* send updated AUV information to file *
if(storemissiondata -- TRUE)
/* $ represents vehicle data *
fprintf(missionofp,"%c %d %d %d %d %f %d %f 91f\n",'$.

Wldftestnode->x] (testnode->yJ .grid.xpos,
Wld~testnode->x] (testnode->yl .grid.ypos,
Wld~testnode->xJ ftestnode->yJ .dir,
Wldftestnode->x] (testnode->y . state,
distrav,auvsteps,0.0, 0.0);

/* remove visited node from visit list *I
delete-from-visit list (testnode->x,testnode->y);

/*PRINT ACTIVE LIST. .Printa contents cf active node list to screen

void print active list()

130

SUBAREALINK ptrsubarea;

NODELINK ptrnode;

~rsrubarea - zh;
while(ptrsubarea !- NULL)

if(verbose -- TRUE) printf("Subarea is %d\n",ptrsubarea->subareanum);
ptrnode - ptrsubarea->nodelistptr;
while(ptrnode NULL)

if(verbose -- TRUE) printf(" Node is %d.%d\n,ptrnode->x,ptrnode->y);
ptrnode -ptrnode->nextnodeptr;

ptrsubarea -ptrsubarea->nextsubareaptr;

/*PRINT AGENDA LIST. .Prints contents of active node list to screen *

void print_agenda-list()

ASNODELINK ptrasnode;

ptrasnode - ash;
while(ptrasnode !- NULL)

if (verbose -- TRUE) printf("\n Agenda node is %d,%d',
ptrasnode->X, ptrasnode->y);

ptrasnode = ptrasnode->nextasnodeptr;

/*PRINT PATH LIST. .Prints contents of path list to screen *

void print path list (pathptr)

NEWPATHLINK pathptr;

while(pathptr !- NULL)

if (verbose -m TRUE)
printf("\n Path node is %d,%d", pathptr->xpath,pathptr->ypath);

pathptr - pathptr->nextnewnode;

131

APPENDIX B: THREE-DIMENSIONAL MINEFIELD SEARCH SOURCE CODE

Title: mine3d.h
Author: Mark Compton
Course: Thesis
Date: 10 Mar 92

Description: This program is a graph-based, three-dimensional search
algorithm for minefield search missions by AUVs.

Support: mine3d.c
Display: Output files may be run in "Search" Graphic simulator.* **** **** ** ************ ** *.****** ** ** ******** ********** ** **********

/*Preprocessing Directives**1
#define BOXWIDTH 15.0 /* box width
#define BOXHEIGHT 15.0 /* box height *1
#define BOXDEPTH 15.0 /* box depth
#define MAXX 15 /* number of nodes in x direction 25*/
#define MAXY 15 /* number of nodes in y direction 25*/
#define MAXZ 3 /* number of nodes in z direction 9*/
#define SUBX 3 /* number of subareas in x direction 5*/
#define SUBY 3 /* number of subareas in y direction 5*/
#define SUBZ 3 /* number of subareas in z direction 3*/
#define SUBXNODES 5 /* number of nodes in each subarea in x direction 5*/
#define SUBYNODES 5 /* number of nodes in each subarea in y direction 5*/
#define SUBZNODES 1 /* number of nodes in each subarea in z direction 3*/
#define MAXSTRING 20 /* for file names */

#define ODD 1 /* defines if a value is odd */
#define EVEN 0 /* defines if a value is even */

#define TRUE 1 /* needed on non iris */
#define FALSE 0

/* defines states of a node */
#define FREE 0 /* nothing at node */
#define OBSTACLE 1 /* obstacle at node */
#define AUV 2 /* vehicln (Autonomous Underwater Vehicle) */
#define ADJACENT 3 /* node adjacent to vehicle */
#define ACTIVE 4 /* detected, n-n-object, not visited */
#define VISITED 5 /* node has been previously visited */
#define ASPATH 6 /* local path selected by A-Star search */

/* defines states of previous node array nodes */
#define NOTEVAL 0 /* node not evaluated - default state *1
#define FRONTIER 1 /* node placed on agenda */
#define CHECKED 2 /* node evaluated and taken off agenda */

/* defines direction of vehicle */
#define NODIR 0

/*G***bals**************** ************** *******************************

char outnode(MAXSTRING]; /* output file for nodes */
FILE *obstacleofp; /* pointer for sending obstacles to file */
FILE *obstacleifp; /* pointer for receiving obstacles from file */
FILE *missionofp; /* pointer for sending mission to file */
FILE *missionifp; /* pointer for receiving mission from file */
FILE *trackofp; /* pointer for sending track to file *1
char inobstacle[MAXSTRING]; ** input file name for obstacles */
char outmission[MAXSTRING]; /* output file name for mission */
char outtrack[MAXSTRING]; /* output file name for track */

132

int searchmethod - 0; /* select search method */
int searchtype - 0; /* select search type */
int auvstartx - 0; /* starting position for AUV */
nt auvstarty - 0; /* starting position for AUV */

int auvstartz - 0; /* starting position for AUV */
int retrievedata - FALSE; /* flag for retrieving obstacle data */
int verbose - FALSE; /* flag to control verbose output */
int storemissiondata - FALSE; /* flag for sending mission data to file */
int storetrackdata - FALSE; /* flag for sending track data to file */
int aprioriobstacle - FALSE; /* shows obstacles prior to mission viewing */

/*Structure***

struct location /* basic structure for location of an entity */i
int xpos,ypos,zpos; /* grid coordinates */1;

typedef struct location Location;

struct node /* basic structure of a search area node */

Location grid; /* grid coordinates of node */
int subarea; /* subarea node is located in */
double x,y,z; /* world position of node */
int dir; /* direction node is looking */
int state; /* status of node */
int visited; /* node previously visited by vehicle flag */

);

typedef struct node Node;

Node Wld[MAXX][MAXY][MAXZ]; /* 3-D array for storing search area nodes */

struct vehicle /* AUV */

Location grid; /* grid coordinates of Vehicle */
int subarea; /* subarea vehicle is located in */
double x,yz; /* world position of ehicle */
int dir; /* direction vehicle is looking or traveling */

typedef struct vehicle Vehicle;

Vehicle Auv; /* Autonomous Underwater Vehicle */

struct activenode; /* announce future structure */

struct activesubarea /* structure of subarea in visit list */

int subareanum; /* number of the subarea */
struct activenode *nodelistptr; /* pointer to first node ir list */
struct.activesubarea *nextsubareaptr; /* pointer to next subarea in list */

typedef struct activesubarea Activesubarea;
typedef Activesubarea *SUBAREALINK; /* pointer to Activesubarea */
SUBAREALINK zh; /* pointer to first subarea in list */

struct activenode /* structure of node in visit list */

int x,y,z; /* coordinates of node */
struct activenode *nextnodeptr; /* pointer to next node in list */

1;
typedef struct activenode Activenode;
typedef Activenode *NODELINK; /* pointer to Activenode */

struct asnode /* structure of node in a-star search agenda list */

int x,yz; /* coordinates of asnode */
float cumcost; /* cumulative cost from start to asnode */
float criteria; /* sum of cumcost and evaluation function */

133

struct asnode *nextasnodeptr; 1* points to next asnode in list *

typedef struct asnode Asnode;
typedef A-.ode *ASNOOELINK; /* pointer to Asnode *
ASNODELINh ash; /* points to head of list *

struct asvertex /* structure for node in previous node array *

mnt xprev,yprev,zprev; /* coordinates of previous vertex *
float cumvertcost; /* cumulative Cost from start *
int condition; /* state of the node */
ASNODELINK ptrtoagenda; 1* points to corresponding node in agenda *

typedef struct asvertex Asvertex;
Asvertex Map(MAXX] (MAXY] (MAXZ];

struct newpath /* structure for ordered path to goal *
I

mnt xpath,ypath,zpath; /* coordinates of nodes in path *
struct newpath *nextnewnode; /* pointer to next newpath node *

typedef 3truct newpath Newpath;
typedef Newpath *NEWPATHLINK; /* pointer to Newpath *
/*NEWPATHLINK pathhead;*/ 1* points to head of path list *

/* minefield search functions *
void set -upo;
void build worldo;
mnt subarea 0;
void retrieveobstacledata 9;
void startposition 0;
void conduct Missiono;
void ladder search 0;
void perform search-routine 0;
void analyze adjacent -nodes 0;
int node vismbleo;
void add to visit listo;
SUBAREALINK insert-subarea 0;
void add_to_niode i isto;
void delete from Visit list 0;
SUBAREALINK locate subarea 0;
mnt delete from nodje listo;
void delete_from_sub area list 0;
NODELINK get priority__node -from-visit list 0;
NODELINK determine best direction 0;
void advance-vehicle-an-d delete~patho;

/* A-Star functions */
NF"IPATHLINK search a star 0;
void analyze -neighbornodes-a-star 0;
void add_to_agenda list 0;
void delete agenda-node 0;
ASNODELINK get-principle node and delete-from_agendao;
void delete-agenda-list(0;
void mark vertex_ path ();
NEWPATHLIRK createjpath list 0;

/*General functions *
mnt oddo;
mnt eveno;
float compute -dist 0;
t inside-area0;

mnt is -adjacent 0;
mnt adjacent -node 0;
void clean-UPO;
void test advance 0;
void print -active-listo;

134

void print agenda Ilisto;
void printypath list 0;

Title: mine3d.c
Author: Mark Compton
Course: Thesis
Date: 10 Mar 92

Description: This program is a graph-based, three-dimensional search
algorithm for minefield search missions by AUVs.

#include** ********** ****

include <stdli.h>

include <math.h>
include I"mine3d. h"

main (

mnt testrun - TRUE;

set upo;
conduct mission 0;
clean-up();

/*SET UP. .Get user inputs *

void set up()

char answer - n'
char reply - I.
char respond - n=
char what - I'
char ack - In.;

/* Ask if verbose output to screen ~
printf('\nDo you wish verbose output to screen? I');
scanf ("%c",fireply);
if (reply -- 'y' 11 reply =- IV) verbose - TRUE;
reply - n'
/* Setup for retrieving obstacle data *
scanf("%c",&answer); /* hack to clear carrage return from buffer *
printf("\n\nObstacle data may be retrieved from a file. \n\n");
printf('Will you be retrieving data from a file?)
scanf ("%c'I, answer);
if (answer - Iy 11 answer - IV)

retrievedata - TRUE;
printf("\n\nPlease enter the obstacle input file name:\n)
scanf ("%s", inobstacle);

/* Setup for sending mission data to file *
scanf("%c",frespond); /* hack to clear carrage return from buffer *
printf("\nMission data may be saved to a file. \n\n');
printf ("Will you be sending mission data to a file?)
scanf ('%c", &respond);
if (respond -- 'y 11 respond -- IV)

storemissiondata II TRUE;

135

printf("\n\nPlease enter the mission file name: \n");
scanf("%s',outmission);
Mi8sionofp - fopen(outmission,"w"); /* open the mission file *

/* Setup for sending mission track to file *
scanf("%c",&what); /* hack to clear carrage return from buffer *
printf("\nMission track may be saved to a file. \n\n");
printf("Will you be sending mission track to a file?)

scanf ("%c", 6what);
if (what -- 'y' 11 what -- IV')

storetrackdata - TRUE;
printfC'\n\nPlease enter the track file name:\n)
scanf ("%s", outtrack);
trackofp - fopen(outtrack,"w"); /* open the track file *

/* Setup for showing obstacles prior to viewing mission playback *
scanf(11%c11,&ack); /* hack to clear carrage return from buffer */
printf('\nObstacles may be displayed prior to viewing mission. \n\n");
printf ("Do you wish to view obstacles prior to viewing mission? "1);

scanf ("%c", &ack);
if (ack -- 'y' 11 ack -- I'Y)

aprioriobstacle - TRUE;

/* Select search method *
printf("\nSelect search method from the following file by typing \n");
printf ("the desired number: ");
printf("\n\nl. Ladder with Sub-area priorities.");
printf("\n2. Ladder without Sub-area priorities. "1);
printf("\n3. None.An");

s1canf ("%d", &searchmethod);/* Select search type */
if(searchmethod -- 1 11 searchmethod -- 2)

printf("\nSelect search type from the following file by typing \n");
printf ("the desired number:)

printf("\n\nl. A Star.");
printf("\n2. None.)

printf("\n3. None.")
printf("\n4. Test Advance. \n");
scanf ("%d", &aearchtype);

/* Select AUV starting position *
printf("\nSelect the start position for the AUV (integer value): \n");
printf("\nx -")
scanf ("%d", &auvstartx);
printfC"\ny - ;
scanf ("%d", &auvstarty);
printf("\nz - ");

s canf ("%d", &auvstartz);build worldo; /* initialize array and node structure ~

/*BUILD WORLD. .Builds the world for vehicle operations *

void build-world()

mnt i,j,k; /* variables for rows, columns and height *

for(k-O; k < MAXZ; k-k+1)

for(J-O; j < MAXY; J-j+1)

136

for(i-O; i < MAXX; i-i+l)

Wld~iI~j][k].x - i
Wld~i[j)[k).y - J
Wld[i](j]Ek].z - k
Wld~i][j][k]..state - FREE;
Wld~i) [jI(k] .visited - FALSE;
WldfiijJ[kl.grid.xpos -=
Wld[i[j~k.grid.ypos - j
Wld[i)[j)k).grid.zpos - k;
if (searchmethod - 2)

Wid[iJ[j][k].subarea = 1;

else

Wldfiljl~kJ.subarea - subarea(i,j,k);

/* following commented out due to excessive verbose time consumed *
/* if (verbose - TRUE)

printf("\nWorld Node is %d,%d,%d",
Wld[i] Ei] (k].grid.xpos,Wld[i] Ci][c] .grid.ypos,
Wld[i][j](k].grid.zpos); *

if (retrievedata -- TRUE)

retrieveobstacledatao; /* fill in obstacles *

startpositiono; /* initiates AUV start position *

/*SUBREA.Determines which subarea a node is in *

mnt subarea (a,b, c)

mnt a,b,c; /* feed in the grid coordinates *

static mnt i, j,k, row, column,level,subarea;

for (kc - 1; kc -e SUBZ; ++k) /* step thru subarea levels *

for (i - 1; i <- SUBY; ++i) /* step thru subarea rows ~

for (j - 1; j <- SUBX; ++j) /* step thru subarea columns *

if (c >- (k-l)*SUBZNODES &&c < Ic*SUBZNODES)

level - k; /* subarea level *

if (b >- (i-l)*SUBYNODES &6 b < i*SUBYNODES)

row - i; /* subarea row

if (a >- (J-l)*SUBXNODES f&~ a < J*SUBXNODES)

column - J; /* subarea column *

if (odd(level)) /* increase from right to left in odd rows

137

if (odd(row))

subarea - (((row-i) *(SUBZ*SUBX))+column)+((level-i) *StJBX);

if (even(row))

subarea - (((row*SUBZ*SUBX)+l)-column)-((level-l) *SUBX);

if (even~level)) /* decrease from right to left in odd rows ~

if (odd(row))
I
subarea - (((row*SUBZ*SUBX)+l)-colum1)-((level-i) *SUBX);

if (even(row))

subarea - ((((row-i) *SUBZ*SUBX))+column)+((level-l) *SUBX);

/* verbose output commented out, too verbose *
/*if (verbose -- TRUE)

printf (\nSubarea is %d",subarea);

return subarea;

/*RETRIEVEOBSTACLEDATA. .Retrieves obstacle data from file if requested *

void retrieveobstacledatao(

int XIYIZ;

obstacleifp - fopen (inobstacle,"r");
/* read obstacle positions from obstacle file *
while(fscanf(obstacleifp, "%d~d%d", &x,&y,&z) 1-EOF)

Wld~x]EyI[z].state - OBSTACLE;
if (verbose - TRUE)
printf ("\nObstacle at %d, %d, %d" ,x, y, z);

1* send obstacle world data to mission file *
/* note that % indicates world data */
if(storemissiondata -- TRUE && aprioriobstacle -- TRUE)
fprintf(missionofp,"%c %d %d %d %d %d\n"2%',

Wldtx] (y] zi .grid.xpos,
Wld[x] [y] (z].grid.ypos,
Wld (xi[yl (zi.grid.zpos,
Wld~xJ (y] (z] .dir,
Wldfx]Cy] (z] .state);

f close (obstacleifp);

/*START POSITION. .Defines the starting position of the AUV *

void start_.osition (

/* read start position from global variable *
Auv.x - Wld~auvstartx] tauvstarty] (auvstartz] .x;
Auv.y - Wld(auvstartxj (auvstartyl (auvstartz] .y;

138

Auv.z - Wldfauvstartx] (auvstarty] (auvstartz] .z;
Auv.grid.xpos - Wld~auvstartx] (auvstarty] (auvstartzj .grid.xpos;
Auv.grid.ypos - Wld~auvstartxj (auvstarty] [auvstartzl .grid.ypos;
Auv.grid.zpos - Wld~auvstartx] (auvstarty] [auvstartz] .grid.zpos;
Auv.dir - NODIR;
Wid~auvatarix] [auvstarty] [auvstartz] .state - AUV;
Wld[auvstartx] (auvstarty] [auvstartz] .visited - TRUE;
if (verbose -- TRUE)
printf("\nAUV start - %d,%d,%d",Auv.grid.xpos,Auv.grid.ypos,Auv.grid.zpo);

/* send AUV start position to file */
/* note that $ indicates search path data *
if (storemissiondata -- TRUE)

/* send start AUV data to file *
fprintf(missionofp."%c %d %d %d %d %d\n','$',

Wld[auvstartx] (auvatarty] (auvstartz] .grid.xpos,
Wldfauvstartx] (auvatartyl [auvstartzj .grid.ypos,
Wld[auvstartx] (auvstarty] [auvstartz] .grid. zpos,
Wld[auvstartx] (auvstarty] (auvstartzJ .dir,
Wld[auvstartx] (auvstarty] (auvstartzj .state);

/* clean up old AUV position and send to file *
/* $ represents vehicle data */
fprintf(missionofp,'%c %d %d %d %d %d\n", '$',

Wld~auvstartx] [auvstarty] [auvstartz] .grid.xpos,
Wld[auvstartx] [auvstarty] [auvstartz] .grid.ypos,
Wld~auvstartxj [auvstarty] [auvstartz] .grid.zpos,
NODIR,
VISITED);

/*CONDUCT MISSION.. Initiates selected mission

void conduct-mission()

ii(searchmethod -- 1)

ladder-search();

if(searchmethod -- 2)

ladder-search();

if(searchmethod -- 3)

if (verbose -- TRUE)
printf ("\nThis search method is not yet programmed. \n");

/*LADfDERSEARCH. Conducts modified ladder search
/* Logic as follows:

1. Look at nodes adjacent to vehicle to determine their status.
a. If nodes have not been visited and are not obstacles and

are not currently on the visit list, add them to the
visit list.

2. Determine the highest priority node.
a. Highest priority node is in list of highest priority subarea.
b. Within highest priority subarea, determine closest node to vehicle.
c. If more than one closest node, choose horizontal over vertical,

right over left, up over down.
3. Move vehicle to priority node.

139

4. Delete visited node from visit list.
5. Search complete when visit list is empty.*I
******************************** ********** ********************

void ladder_search()

NODELINK visitnode - NULL; /* priority node to visit from visit list */

analyze adjacentnodes(;
visitnode - getprioritynode from visit-list 0;
if(verbose -- TRUE)

printf("\nThe priority node is %d,%d,%d\n",
visitnode->x, visitnode->y,visitnode->z);

while (visitnode !- NULL)

perform search routine(visitnode); /* moves AUV to priority node */
analyze adjacent_nodes();
visitnode - get priority node from visit listo;
/* if(verbose -- TRUE) *7

/* printf("\nThe priority niode is %d,%d,%d",
visitnode->x,visitnode->y,visitnode->z); */

if (visitnode -- NULL)

printf("\nSEARCH COMPLETE! !\n");}

I*************************** ************** **** ******************

/*PERFORM SEARCH ROUTINE..This selects the type of search routine used to*/
/*go to the selected goal node, conducts search and returns path/**
void perform_searchroutine(goalnodeptr)

NODELINK goalnodeptr; /* node to be visited from AUV current posit */

NEWPATHLINK pathlistptr; /* points to list giving vehicle path */

if (searchtype -- 1)

if(verbose -- TRUE)
printf("\n\nBeginning A-star search to next goal node\n\n");
/* determine path to goal from AUV current position with A-star */
pathlistptr - search a_star(goalnodeptr);
/* move vehicle along path, replan if obstacle encountered */
/* and delete path list when finished */
/* print-pathlist(pathlistptr); */
advance vehicleanddeletepath(pathlistptr);
free (pathlistptr);
if(verbose -- TRUE)

printf("\n\nEnding A-star search ... reached this goal\n\n");

if (searchtype -2) printf(\nNot a usable search!!\n");
if (searchtype -- 3) printf("\nNot a usable search!!\n");
if (searchtype -- 4)

if(verbose - TRUE)
printf("\nThe search routine is test advance\n");

test advance(goalnodeptr);

140

/*ANALYZEADJACENTNODES. .Determine status of nodes adjacent to AUV *
/*if nodes is not an obstacle and has not been visited then add it to *
/*the visit list

void analyze adjacent-nodes C)

/* LOOK AT UP *

/* UP NORTH *
/* check adjacent node *
if((node visible(Auv.grid.xpos,Auv.grid.ypos+l,Auv.grid.zpo3+) -- TRUE) I

Wld(Aiiv.grid.xposl [Auv.grid.ypos+l] [Auv.grid.zpos+l] .state -- OBSTACLE 66
storemissiondata -- TRUE)

fprintf(missionofp,"%c %d %d %d %d %d\n','%',
Wld[Auv.grid.xpos] IAuv.grid.ypos+l] fAuv.grid.zpos+l] .grid.xpos,
Wld[Auv.grid.xpos] [Auv.grid.ypos+lJ [Auv.grid.zpos+l] .grid.ypos,
Wld[Auv.grid.xpos] EAuv.grid.ypos+lJ [Auv.grid.zpo3+1J .grid.zpos,
Wld[Auv.grid.xpos] [Auv.grid.ypos+l] (Auv.grid.zpo3+lJ .dir,
Wld[Auv.grid.xpos] [Auv.grid.ypos+l] [Auv.grid.zpos+lJ .state);

if((node visible(Auv.grid.xpos,Auv.grid.ypos+l,Auv.grid.zpos+l) -- TRUE) 66
(WldAuv.grid.xpos] [Auv.grid.ypos+l] [Auv.grid.zpos+l] .visited =-FALSE) &
(Wld[Auv.grid.xpos] (Auv.grid.ypos+lj (Auv.grid.zpos+l] .state !-ACTIVE) £
(WldEAuv.grid.xpos] (Auv.grid.ypos+lJ (Auv.grid.zpos+lJ .state !=OBSTACLE))

if (verbose - TRUE)
printf('\nAnalyzing adjacent node %d,%d,%d',

Auv.grid.xpos,Auv.grid.ypos+l.Auv.grid.zpos+l);
add-to-visit-list (Auv.grid.xpos,Auv.grid.ypos+l,Auv.grid.zpos+1);

/* DOWN NORTHWEST ~
/* check adjacent node *
if((node visible(Auv.grid.xpos-l,Auv.qrid.ypos+l,Auv.grid.zpos-l) -- TRUE) 66

Wld[Auv.grid.XP0s-l] [Auv.grid.ypos+l] (Auv.grid.zpos-l] .state - OBSTACLE &
storemissiondata -- TRUE)

fprintf(missionofp,"%c %d %d %d %d %d\n",'%.
Wld[Auv.grid.xpos-l] (Auv.grid.ypos+l] (Auv.grid.zpos-l.grid.xpos,
Wld[Auv.grid.xpos-l] (Auv.grid.ypos+l] (Auv.grid.zpos-l.grid.ypos,
Wld(Auv.grid.xpo3-lJ (Auv.grid.ypos+l] (Auv.grid.zpos-l] .grid.zpos,
Wld(Auv.grid.xpos-l] (Auv.grid.ypos+l] LAuv.grid.zpos-l] .dir,
Wld(Auv.grid.xpos-1] (Auv.grid.ypos+l] (Auv.grid.zpos-l.state);

if((node-visible(Auv.grid.xpos-l,Auv.grid.ypos+l,Auv.grid.zpo-) - TRUE) £
(Wld[Auv.grid.xpos-l] (Auv.grid.ypo3+lJ (Auv.grid.zpos-l.visited - FALSE) &
(Wld(Auv.grid.xpos-lJ (Auv.grid.ypos+lJ [Auv.grid.zpos-1J .state !-ACTIVE) &
(Wld[Auv.grid.xpos-lJ (Auv.grid.ypos+lJ (Auv.grid.zpos-lJ .state !-OBSTACLE))

if (verbose - TRUE)
printf("\nAnalyzing adjacent node %d,%d,%d',

Auv.grid.xpos-l,Auv.grid.ypos+l,Auv.grid.zpos-1);
add-to-visit-list (Auv.grid.xpos-l,Auv.grid.ypos+1,Auv.grid.zpos-l);

/* END DOWN *

141

/*NODEVISIBLE.. Determines if a node adjacent to AUV is inside of the *
/*search area and is available

mnt node-visible(x,y,z)

mnt x,y,z;

if((inside__area(xyz)) && (Wldfxyz.state -- FREE))
return TRUE;

else
return FALSE;

/*ADDTOVISITLIST. .Adds node to visit list

void add-to-visit_list(XPOS,ypos,zpos)

mnt xpos,ypos,zpos;

SUBAREALINK subareaheadptr - NULL; /* temp ptr to first subarea *
SUBAREALINK currsubareaptr - NULL; /* temp ptr to current subarea ~
SUBAREALINK subareaofinteresi - NULL; /* ptr to subarea of interest *
mnt currentsubarea; /* indicates subarea of interest number *

currentsubarea - Wld[xpos][ypos][zpos].subarea; /* subarea of interest ~
/* change state of node to add to active *
Wld~xpos] (ypos] (zpos] .state - ACTIVE;
/* send active node to output file ~
if (storemissiondata -- TRUE)

fprintf(missionofp,"%c %d %d %d %d %d\n"'$',
Wld~xpos] (ypos] [zposj .grid.xpos,
Wld~xpos] [ypos] Ezpos] .grid.ypos,
Wld[xpos] fypos] [zpos] .grid.zpos,
NODIR,
Wld[xpos] (ypos] zpos] .state);

if (zh -- NULL) /* subarea list is empty so create subarea and first node *

subareaheadptr - (Activesubarea*) malloc (sizeof (Activesubarea));
zh - subareaheadptr; /* attach start pointer to first subarea record *
subareaheadptr->subareanum -currentsubarea;

subareaheadptr->nodelistptr -(Activenode*) malloc (sizeof (Activenode));
subareaheadptr->nodelistptr->x - xpos;
subareaheadptr->nodelistptr->y - ypos;
subareaheadptr->nodelistptr->z = zpos;
subareaheadptr->nodelistptr->nextnodeptr - NULL;
subareaheadptr->nextsubareaptr - NULL;
if (verbose -- TRUE)
printf("\nAdding first node %d,%d,%d and subarea %d to visit list",

XPos1ypos, zpos, currentsubarea);

else /* there exist subareas in linked list *

subareaofinterest - insert subarea (currentsubarea);
add-to-node-list (subareaofinterest,xpos,ypos, zpos);

/*INSERT SUBAREA.. Inserts subarea in proper place in subarea list

142

/*and returns a pointer to that subarea *

SUBAREALINK insert-subarea (current subarea)

int currentsubarea;

SUBAP.EALINK currsubareaptr,prevsubareaptr; /* current and previous pointers *
SUBAREALINK tempptr:

currsubareaptr - zh;
prevsubareaptr - currsubareaptr;

/* cycle through subareas to place prioritized subarea of interest *
while (currsubareaptr !- NULL)

/* equivalent subarea priority *
if (currsubareaptr->subareanum -=currentsubarea)

return currsubareaptr;

/* advance currentsubarea pointer ~
currsubareaptr - currsubareaptr->nextsubareaptr;
/* highest priority subarea in list *
if (zh->subareanum > currentsubarea &

currsubareaptr -- NULL)

tempptr- (Activesubarea*) malloc (sizeof (Activesubarea));
tempptr->subareanum - currentsubarea;
tempptr->nextsubareaptr - zh;
tempptr->nodelistptr - NULL;
zh - tempptr;
if (verbose -- TRUE)

printf ('\nAdding subarea %d to visit list', currentsubarea);
return tempptr;

/* lowest priority subarea in list *
if (prevsubareaptr->subareanum < currentsubarea &

currsubareaptr -- NULL)

tempptr- (Activesubarea*) malloc (sizeof (Activesubarea));
tempptr->subareanum - currentsubarea;
tempptr->nextsubareaptr - currsubareaptr;
tempptr->nodelistptr - NULL;
preVsubareaptr->nextsubareaptr - tempptr;
if (verbose -- TRUE)

printf("\nAdding subarea %d to visit list",currentsubarea);
return ternpptr;

/* not highest or lowest priority subarea in list *
if (prevsubareaptr->subareanum < currentsubarea &

currsubareaptr->subareanum > currentsubarea)

tempptr-(Activesubarea*)malloc(sizeof(Activesubarea));
tempptr->subareanum - currentsubarea;
tempptr->nextsubareaptr - currsubareaptr;
tempptr->nodelistptr - NULL;
prevsubareaptr->nextsubareaptr m tenipptr;
if (verbose -- TRUE)
printf("\nAdding subarea %d to visit list",currentsubarea);

return tempptr;

/* priority location not found, advance pointers for while loop *
prevsubareaptr - currsubareaptr;

143

/*ADD TO NODE LIST. .Places a node at the head of a node list

void add-to-node-list (subareaofint,xposit,yposit,zposit)

SUBAREALINK subareaofint;
mnt xposit, yposit, zposit;

NODELINK temptr; /* temp ptr to new node *

temptr- (Activenode*)malloc (sizeof (Activenode));
temptr->x - xposit;
temptr->y - yposit;
temptr->z - zposit;
temptr->nextnodeptr - subareaofint->nodelistptr;
subareaofint->nodelistptr - temptr;
if (verbose -- TRUE)
printf("\nAdding node %d,%d,td to visit list",xposit,yposit~zposit);

/*DELETEFROMVISITLIST. .Deletes a node and subarea from visit list

void delete-from.ivisit-list(xpos,ypos,zpos)

mnt xposlypos,zpos;

SUBAREALINK subareaheadptr - NULL; /* temp ptr to first subarea '
SUBAREALINK currsuhE eaptr - NULL; 1* temp ptr to current subarea *
SUBAREALINK subareaofinterest - NULL; 1* ptr to subarea of interest *
mnt currentsubarea; /* indicates subarea of interest number *
mnt emptysubarea - FALSE; /* flag indicating empty subarea *1

currentsubarea - Wld(xpos](yposj(zpos].aubarea; /* subarea of interest ~
if (zh !- NULL)

subareaolinterest - locate subarea (currentsubarea);
emptysubarea - delete from node-list (3ubareaofinterest, xpos,ypos, zpos);
if (emptysubarea -- TRUE)

delete-from-subarea-list(currentsubarea);

else

printf("\nERROR! Visit list is empty! \n");

/*LOCATE SUBAREA. .Points to the subarea of interest '

SUBAREALINK locate-subarea (currentaubarea)

mnt currentsubarea;

SUBAREALINK tempptr;

tempptr - zh;
while (tempptr !- NULL)

144

if (teznpptr->subareanum -- currentsubarea)

if (verbose -- TRUE)
printf("\nSubarea of interest is subarea %d",tempptr->subareanum);

return tempptr;

tempptr - tempptr->nextsubareaptr;

/*DELETE FROM NODE LIST. .Deletes a node from a list

mnt delete-from-node-list(subarea of interest,xpos,ypbs,zpos)

SUBAREALINK subarea-of-interest;
int XPosypos,zpos;

NODELINK tempptr; /* temp ptr to new node *

NODELIN(previousptr; 1* temp ptr to previous node *
tempptr - subarea -of-interest->nodelistptr;
/* if node is first in subarea's node list *
if (tempptr->x -- xpos ~

tempptr->y -=ypos &
tew~pptr->z -=zpos)

previousptr - tempptr;
subarea of interest->nodelistptr - tempptr->nextnodeptr;
tempptr->nextnodeptr m NULL;
f ree (tempptr) ;
if (verbose - TRUE)
printf("\nDeleting node %d, %d,%d from visit list',xpos,ypos,zpos);

if (subarea-of-interest->nodelistptr -= NULL) /* no more nodes in list *

return TRUE;

/* if node is not first in subarea of interest *
/* advance ptr into node list to second node *
tempptr - tempptr->nextnodeptr;
previousptr - subarea of interest->nodelistptr;
while (tempptr !-NULL)

if (tempptr->x -- xpos £~tempptr->y -- ypos &&tempptr->z -- zpos)

previousptr->nextnodeptr - tempptr->nextnodeptr;
tempptr->nextnodeptr - NULL;
free(tempptr);
if (verbose -- TRUE)
printf("\nDeleting node %d,%d,td from visit list",xpos,ypos~zpos);

previousptr - previousptr->nextnodeptr;
tempptr - tempptr->nextnodeptr;

/*DELETE FROM SUBAREA LIST. .Deletes a subarea from a list

void delete-from-subarea-list (currentsubarea)

mnt currentaubarea;

145

SUBAREALINK prevsubarea, currsubarea;

currsubarea - zh;
/* deleting first subarea in list *
if (currsubarea->subareanum -- currentsubarea)

Ih-crsbra>etuaepr
zhcurrsubarea->nextsubareaptr NL;
f(currae-xsubarea -NUL
fre(ebrbo-Rea)

printf('\nDeleting subarea %d from visit list"l,currentsubarea);

/* deleting some other subarea in list *
prevaubarea - currsubarea;
currsubarea - currsubarea->next subareaptr;
while (currsubarea !- NULL)

if (currsubarea->subareanum -- currentsubarea)

prevsubarea->nextsubareaptr - currsubarea->nextsubareaptr;
currsubarea->nextsubareaptr - NULL;
free (currsubarea);
if (verbose -- TRUE)

printf("\nDeleting subarea %d from visit list",currentsubarea);

currsubarea - currsubarea->nextsubareaptr;
prevsubarea - prevsubarea->nextsubareaptr;

/*GET PRIORITYNODEFROMVISITLIST.. Locates highest priority node in *
/*visit list based on linear distance

NODELINK get priority node-from-visit list()

float best dist = 1000.0,/* best overall distance at given point *
diet; /* distance to node being analyzed *

NODELINK best node, /* points to best priority node *
tempptr; /* points to node being analyzed *

/* search complete *
if (zh -- NULL)

return NULL;

tempptr - zh->nodelistptr;
while (tempptr != NULL)

dist - compute dist (Auv.grid.xpos,tempptr->X,
Auv .grid. ypos, tempptr->y,
Auv.grid.zpos,tempptr->z);

if (dist < best-dist)

best dist - dist;
best-node - tempptr;

if (dist - best-dist)

best-node - determine-best-direction(best node,tempptr);

tempptr - tempptr->nextnodeptr;

146

if (verbose -- TRUE)
printf("\nPriority node pointed at in visit list is %d,%d,%d',

retun bst-nde;best-node->x,best node->y,best-node->z);

/*DETERMINEBESTDIRECTION. Determines which node to go to among nodes *
/*of equal distance. Takes horizontal over vertical, right over left. *
/*Takes current level, then upper level, then lower level.

NODELINK determine-best-direction (bestnode,testnode)

NODELINK bestnode, testnode;

if (bestnode->z -- testnode->z)

if (bestnode->y > Auv.grid.ypos &&testnode->y ==Auv.grid.ypos I
bestnode->y < Auv.grid.ypos &&testnode->y =-Auv.grid.ypos)

return testnode;

if (bestnode->y -Auv.grid.ypos &&testnode->y > Auv.grid.yposI
bestnode->y - Auv.grid.ypos £&testnode->y < Auv.grid.ypos)

return bestnode;

if (bestnode->y > Auv.grid.ypos &&testnode->y > Auv.grid.ypos I
bestnode->y > Auv.grid.ypos &&testnode->y < Auv.grid.ypos
bestnode->y - Auv.grid.ypos &&testnode->y -- Auv.grid.ypos 1
bestnode->y < Auv.grid.ypos &&testnode->y > Auv.grid.ypos I
bestnode->y < Auv.grid.ypos &&testnode->y < Auv.grid.ypos)

if (bestnode->x > testnode->x)

if (verbose - TRUE)
printf("\nBest direction is to node %d,%d",bestnode->x,bestnode->y);

return bestnode;

if (bestnode->x < testnode->x 11I bestnode->x -- testnode->x)

if (verbose -- TRUE)
printf("\nBest direction is to node %d,%d",testnode->x,testnode->y);

return testnode;

if (bestnode->z -- Auv.grid.zpos && testnode->z !Auv.grid.zpos)

return bestnode;

if (bestnode->z !- Auv.grid.zpos &&testnode->z -=Auv.grid.zpos)

return testnode;

if (bestnode->z > testnode->z)

return testnode;

else

return bestnode;

147

/*ADVANCEVEHICLE AND DELETE PATH. .Given a pathlist, advances vehicle *
/*along path and Uele~es path. If obstacle encountered, stops and
/*reinitiates new path search

void advance-vehicle-and-deletejath(pathlist)

NEWPATHLINK pathlist;

NEWPATHLINK temppathptr;

while(pathlist !- NULL)

/*clean up old AUV position *
if (verbose -- TRUE) printf('\n Clean up old AUV position");
Wld[Auv.grid.xpos] EAuv.grid.yposj [Auv.grid.zposj .state - VISITED;
Wld(Auv.grid.xposj (Auv.grid.yposj (Auv.grid. zpos] .visited - TRUE;
MaptAuv.grid.xpos] (Auv.grid.ypos] [Auv.grid.zposl .condition -NOTEVAL;
/* send updated node data from former AUV position to file *
/* $ represents vehicle data *
if (storemissiondata -- TRUE)

fprintf(miSsionofp,"%c %d %d %d %d %d\n",'$',
Wld[Auv.grid.xpos] [Auv.grid.ypos] IAuv.grid.zpos] .grid.xpos,
Wld(Auv.grid.XPos] [Auv.grid.ypos] (Auv.grid.zpos] .grid.ypos,
Wld[Auv.grid.xpos] (Auv.grid.ypos] (Auv.grid.zpos] .grid.zpos,
Wld(Auv.grid.xposj fAuv.grid.ypos] (Auv.grid.zposj .dir,
Wld(Auv.grid.xpos] [Auv.grid.ypos] [Auv.grid.zpos] .state);

/* update AUV Position and status ~
if (verbose -- TRUE) printf('\n Update AUV Position");
if (verbose -- TRUE) printf("\n Pathlist Position is %d,%d,,%d".

pathlist->xpath, pathlist->ypath,pathlist->zpath);
Auv.grid.XPos - pathlist->xpath;
Auv.grid.ypos - pathlist->ypath;
Auv.grid.zpos - pathlist->zpath;
Auv.x - pathlist->xpath;
Auv.y - pathlist->ypath;
Auv.z - pathlist->zpath;
Wld~pathlist->xpath] [pathlist->ypath] (pathlist->zpath] .state m AUV;
delete from visit list (pathlist->xpath, pathlist->ypath, pathlist->zpath);
if (verbose -Z- TRUE)
printf("\nAUV position - %,d%~"

Wld~pathlist->xpath] [pathlist->ypath] [pathlist->zpath] .grid.xpos,
Wld [pathlist->xpath] (pathlist->ypath] (pathlist->zpathl .grid.ypos,
Wld~pathlist->xpath] Epathlist->ypath] [pathlist->zpathj .grid.zpos);

/* send updated AUV information to file *
if(storemissiondata -- TRUE)
/* $ represents vehicle data *
fprintf(missionofp,2%c %d %d %d %d %d\n", '$',

Wld~pathlist->xpath] (pathlist->ypath] (pathlist->zpathj .grid.xpos,
Wld[pathlist->xpath] [pathlist->ypath] (pathlist->zpath] .grid.ypos,
Wld~pathlist->xpathj (pathlist->ypath] [pathlist->zpath] .grid.zpos,
Wid [pathlist->xpath] (pathlist->ypath] Epathlist->zpathi dir,
Wld[pathlist->xpath] [pathlist->ypath] (pathlist->zpath] .state);

/* send mission track data to file *
if(storetrackdata -- TRUE)
fprintf(trackofp,"%f %f %kf\n",

(BOXWIDTH *Wld~pathlist->xpath] Epathlist->ypath] [pathlist->zpathj .x),
(BOXHEIGHT*Wldfpathlist->xpathI (pathlist->ypathl [pathlist->zpath] .y),
(BOXDEPTH*Wldlpathlist->xpath] Epathlist->ypath) [pathlist->Zpathj .z));

temppathptr - pathiist;

148

pathlist - pathlist->nextnewnode;
temppathptr->nextnewnode - NULL;
free(temppathptr);

/**/
/*SEARCH_A_STAR..This routine performs the high level functions of an
/*A-Star search and returns a pointer to path list 'I/***
NEWPATHLINK search a star(goalnodeptr)

NODELINK goalnodeptr;

ASNODELINK currentasnodeptr; /* ptr to asnode of interest */
ASNODELINK previousasnodeptr; /* ptr to previous asnode of interest */
NEWPATHLINK pathlistptr; /* ptr to desired path list */
Asnode auvnode; /* temporary holder for auv evaluation posit */
int i,j,k; /* for initializing vertex world */

/* initialize vertex world */
for (k-0; k<MAXZ; ++k)

for (j-0; j<MAXY; ++j)

for (i-0; i<MAXX; ++i)

Map[i] [j] [k].xprev - 0;
Map(i]j]E[k].yprev = 0;
Map(i](j][k].zprev - 0;
Map[i][j]k].cumvertcost - 0.0;
Mapfi][j)[k].condition - NOTEVAL;
Map[i][j][k].ptrtoagenda - NULL;
/* works so commented out to save time */
/* if(verbose -- TRUE)
printf("\n Vertex node being initialized is %d,%d,%d\n",i,j,k); */

/* initialize AUV start position */
/* makes sure not reanalyzed in algorithm */
Map[Auv.grid.xpos](Auv.grid.ypos] (Auv.grid.zpos].condition - CHECKED;
/* beginning with AUV current position ... */
currentasnodeptr - (Asnode*)malloc(sizeof(Asnode));
currentasnodeptr->x - Auv.grid.xpos;
currentasnodeptr->y - Auv.grid.ypos;
currentasnodeptr->z - Auv.grid.zpos;
currentasnodeptr->cumcost - 0.0;
currentasnodeptr->criteria - 0.0;
currentasnodeptr->nextasnodeptr - NULL;
/* assign pointer to previous asnode */
previousasnodeptr - currentasnodeptr;
if(verbose -- TRUE)
printf("\n AUV vertex node being initialized is at %d,%d,%d",

Auv.grid.xpos,Auv.grid.ypos,Auv.grid. zpos);
/* compute costs and criteria and add to agenda as appropriate */
/* note, if agenda is empty, use AUV position */

analyze neighbornodes a star(currentasnodeptr,goalnodeptr);
print agenda list(};

/T while-agenda not empty, move toward goal */
while (ash !- NULL)

/* point to priority vertex and delete it from agenda */
currentasnodeptr - getprinciplenodeand delete fromagendao;

/* annotate prior vertex in asvertex array */

149

/* mark vertexjpath (previouuaarhodeptr, currentasnodeptr); delete *
1* check for goal */

if (currentasnodeptr->x -=goalnodeptr->x 66
currentasnodeptr->y ==goalnodeptr->y &
currentasnodeptr->z -- goalnodeptr->z)

delete agenda list 0; /* cleans up old agenda *
pathlistptr - createpath -list (currentasnodeptr);/* builds path list *
free (currentasnodeptr);
return pathlistptr;

/* compute costs and criteria and add to agenda as appropriate *
previousasnodeptr - currentasnodeptr;
analyze neighbor-nodes-a-star (currentasnodepir, goalnodeptr);

/*ANALYZE_-NEIGHBOR_-NODESASTAR.. Looks at neighbor nodes to determine *
/*status, computes costs and criteria and adds nodes to agenda

void analyze neighbor nodes a star (currasnodeptr, goalpir)

ASNODELINK currasnodeptr;
NODELINK goalptr;

/* LOOK TIP *

/* UP NORTH *
if (verbose -- TRUE)
printf("\n Looking Up North");

/* check neighbor node */
/* within confines of world *

if (inside area (currasnodeptr->x, currasnodeptr->y+1, currasnodeptr->z+l) &
/* and not an obstacle */
(Wldfcurrasnodeptr->x] (currasnodeptr->y+l] Ecurrasnodeptr->z+l) .state !

OBSTACLE) &
/* and either visited or is the goal or is neighbor to the AUV */
((Wld (currasnodeptr->xJ fcurrasnodeptr->y+l] [currasnodeptr->z+1] .visited -

TRUE) I
(currasnodeptr->x -- goalptr->x &
currasnodeptr->y+l -=goalptr->y &
currasnodeptr->z+l =-goalptr->z) I
(adjacent node (Auv.grid.xpos,Auv.grid.ypos,Auv.grid.zpos,

currasnodeptr->x, currasnodeptr->y+l, currasnodeptr->z+l))) &
((Map(currasnodeptr->x] (currasnodeptr->y+l] Ecurrasnodeptr->z+l] .condition

-- FRONTIER) 11I
(Map(currasnodeptr->x] (currasnodeptr->y+l] (currasnodeptr->z+l] .condition

-- NOTEVAL)))

if (verbose -- TRUE)
printf('\n Analyzing neighbor node in Vertex World %d,%d,%d"',

currasnodeptr->x,currasnodeptr->y+l, currasnodeptr->z+l);
add-to agenda list (currasnodeptr->x, currasnodeptr->y, currasnodeptr->z,

currasnodeptr->x, currasnodeptr->y+l, currasnodeptr->z+l *goalptr);

/* DOWN NORTHWEST *
if (verbose -- TRUE)
printf("\n Looking Down Northwest");

/* check neighbor node *

150

if (inside -area (currasnodeptr->x-1, currasnodeptr->y+l, currasnodeptr->z-1) &
(Wldtcurrasnodeptr->x-1] [currasnodeptr->y+1] [currasnodeptr->z-1 I state !

OBSTACLE)
((Wld[currasnodeptr->x-1] Ecurrasnodeptr->y+1] [currasnodeptr->z-1] .visite.-,

TRUE) I
(currasnodeptr->x-l = goalptr->x &
currasnodeptr->y+1 - goalptr->y &
currasnodeptr->z-l - goalptr->z) I
(adjacent-node(Auv.grid.xpos,Auv.grid.ypos,Auv.grid.zpos,

currasnodeptr->x-l,currasnodeptr->y+1,currasnodeptr->z-1))) ~
((Map(currasnodeptr->x-l] [currasnodeptr->y+1J (currasnodeptr->z-1 I condition

--FRONTIER) 11I
(Map~currasnodeptr->x-1 I currasnodeptr->y-1 I[currasnodeptr->z-1 I. condition

--NOTEVAL)))

if (verbose - TRUE)
printf("\n Analyzing neighbor node in Vertex World %d,%d,%d",

currasnodeptr->x-1,currasnodeptr->y+l, currasnodeptr->z-1);
add-to-agenda -list (currasnodeptr->x, currasnodeptr->y, currasnodeptr->z.

currasnodeptr->x-l, currasnodeptr->y+l, currasnodeptr->z-1, goalptr);

/* END DOWN *

/*ADD TO AGENDA LIST. .Adds a vertex node to the agenda list ordered by *
/*cri~eria value from lowest to highest

void add to agenda_list (curx, cury, curz, nextx, nexty, nextz, goalasptr)

mnt curx,cury,curz, /* position adding from *
nextx,nexty,nextz; 1* position being added *

NODELINK goalasptr; 1* points to the goal *

ASNODELINK tempnxtptr, 1* temp ptr to next node being analyzed *
tempcurptr; /* temp ptr to current reference node *

ASNODELINK curragendaptr, /* current agenda location */
prevagendaptr; /* keeps track of previous agenda location *

curragendaptr - ash;
prevagendaptr - curragendaptr;
tempnxtptr - (Asnode*)malloc (sizeof (Asnode));
tempnxtptr->x - nextx;
tempnxtptr->y - nexty;
tempnxtptr->z - nextz;
tempcurptr - (Asnode*)malloc (sizeof (Asnode));
tempcurptr->x - curx;
tempcurptr->y - cury;
tempcurptr->z - curz;

if (verbose -- TRUE)

printf(C"\nThe nodes being fed to mark-vertex path are %d, %d, %d and %d, %d, %d",
tempcurptr->x, tempcurptr->y, tempcurptr->z,
tempnxtptr->x, tempnxtptr->y, tempnxtptr->z);

printf("\n Reference cumulative cost is %f",
Map(curxl [curyl [curz] .cumvertcost);

printf("\n Compute distance between");
printf(" CURRENT VERTEX and NEXT VERTEX -cumcost-");

/* compute cumulative cost and criteria value *
/* compute the cumulative cost to next node */
tempnxtptr->cumcost - Map [curx] [cury] [curz] .cumvertcost +

compute di st (curx, nextx,
cury, nexty,

151

curz,nextz):
if (verbose -- TRUE)
printf("\n Compute distance between NEXT VERTEX and GOAL -criteria-");

tempnxtptr->criteria -tempnxtptr->cumcost +
compute-dist (nextx, goalasptr->x,

nexty, goalasptr->y,
nextz, goalasptr->z);

if (verbose -- TRUE'
printf("\n Criteri.a is %f",tempnxtptr->criteria);

tempnxtptr->nextasnodeptr - NULL;
if (verbose -- TRUE)

printf("\n Compute distance between");
printf("\n CURRENT VERTEX and NEXT VERTEX -cumcost-");

/* if a frontier node, check to see if criteria is less *
/* note that a frontier node is currently on the agenda *
/* if next node criteria value is less, get rid of old one and *
/* add next node to agenda list *
/* else, clean up and do nothing *
if (Map(tempnxtptr->x] [tempnxtptr->y] (tempnxtptr->z] .condition -=FRONTIER)

if (verbose - TRUE)

printf("\n Analyzing Frontier Node %d,%d,%d",nextx,nexty~nextz);
printf("\n Current Criteria is %f",

Map (tempnxtptr->x] [tempnxtptr->y] [tempnxtptr->z] ptrtoagenda->criteria);
printf C"\n Next Criteria is %f", tempnxtptr->criteria);

if (tempnxtptr->criteria <
Map~tempnxtptr->x] [tempnxtptr->y] (tempnxtptr->z] .ptrtoagenda->criteria)

if (verbose - TRUE)
printf("\n Replacing frontier node %d,%d,%d",

tempnxtptr->x, tempnxtptr->y, tempnxtptr->z);
delete -agenda -node (Map Rempnxtptr->x] Eterpnxtptr->y] Etempnxtptr-

>z] .ptrtoagenda);
Map [tempnxtptr->x] [tempnxtptr->y] (tempnxtptr->z] .ptrtoagenda - ternpnxtptr;
Map ftempnxtptr->xJ ftempnxtptr->yJ (tempnxtptr->z] .condition = FRONTIER;
Map (tempnxtptr->x] (tempnxtptr->y] [tempnxtptr->z] .cumvertcost =

tempnxtptr->cumcost;

else

free (terrpnxtptr);
if (verbose - TRUE)

printf("\n Not Replacing frontier node %d,%d,%d",
tempnxtptr->x, tempnxtptr->y, tempnxtptr->z);

return;

/* if node is not even on the agenda then change its state and add *
/* it to agenda list */
if (Map[tempnxtptr->x] [tempnxtptr->y] [tempnxtptr->z).condition -- NOTEVAL)

Map (tempnxtptr->xJ ftempnxtptr->yj (tezpnxtptr->zJ .condition - FRONTIER;
Map [tempnxtptr->x] (tempnxtptr->y] (tempnxtptr->z] .cumvertcost-

tempnxtptr->cumcost;
if (verbose - TRUE)

printf("\n Changing Node %d,%d,%d to FRONTIER",
tempnxtptr->x, tempnxtptr->y, tempnxtptr->z);

/* add to list ordered by criteria value ~
if (ash !- NULL)

if (verbose -- TRUE)
printf("\n Adding node %d,%d,%d to agenda",

tempnxtptr->x, tempnxtptr->y, tempnxtptr->z);

152

/* cycle through nodes in list to place in order by criteria */
while (curragendaptr !- NULL)

/* lowest criteria value in list */
if (tempnxtptr->criteria < ash->criteria)

/* annotate previous node array 4/
mark vertexpath(tempcurptr,tempnxtptr);
if(verbose -- TRUE)
printf("\n Inserting vertex %d,%d,%d at head of agenda list",

tempnxtptr->xtempnxtptr->y,tempnxtptr->z);
tempnxtptr->nextasnodeptr - ash;
ash - tempnxtptr;
/* clean up pointers */
free(tempcurptr);
tempnxtptr - NULL;
tempcurptr - NULL;
return;

/* advance pointer to second node on agenda */
curragendaptr - curragendaptr->nextasnodeptr;
/* highest criteria value in list */
/* not lowest criteria value in list */
if (curragendaptr -- NULL 11

(tempnxtptr->criteria <- curragendaptr->criteria &&
tempnxtptr->criteria >- prevagendaptr->criteria))

/*annotate previous node array */
markvertex_path(tempcurptr,tempnxtptr);
if(verbose -- TRUE)
printf("\n Inserting vertex %d,%d,%d within agenda list",

tempnxtptr->x,tempnxtptr->y,tempnxtptr->z);
tempnxtptr->nextasnodeptr - curragendaptr;
prevagendaptr->nextasnodeptr - tempnxtptr;
/* clean up pointers */
free(tempcurptr);
tempnxtptr - NULL;
tempcurptr - NULL;
return;

prevagendaptr - prevagendaptr->nextasnodeptr;

/* agenda list is empty */
if (ash -- NULL)

/*annotate previous node array */
mark vertex_path(tempcurptr,te--xtpt v;
if(verbobe =- TRUE)

printf("\n Agenda list is empty. Inserting %d,%d,%d ",
tempnxtptr->x,tempnxtptr->y,tempnxtptr->z);

ash - tempnxtptr; /* assign head ptr to first node in list */
/* clean up pointers */

free(tempcurptr);
tempnxtptr - NULL;
tempcurptr - NULL;

/*DELETE AGENDA NODE..Locates node in agenda list and deletes/** ************** ***********

void delete agendanode(agendapointer)

ASNODELINK agendapointer;

153

ASNODELINK curptr, prevptr;

curptr -ash; /* point to top of list *
prevptr -curptr;

/* if first node on agenda list *
if (ash -- agendapointer)

ash - ash->nextasnodeptr;
f ree (curptr);
return;

/* not first node on agenda list *
while (curptr !- NULL 11 curptr !-agendapointer)

curptr - curptr->nextasnodeptr;
if (curptr - agendapointer)

prevptr->nextasnodeptr - curptr->nextasnodeptr;
free (curptr);
return;

prevptr - curptr;

return;

/*GET_-PRIORITY-NODEANDDELETEFROMAGENDA.. Points to the principle node *
/*in agenda, returns it, and deletes it from the agenda

ASNODELINK get principle node-and-delete-from -agenda()

ASNODELINK principlenodeptr;

if (ash -- NULL)
printf ("\n Agenda is empty, cannot get principle node");

principlenodeptr - ash;
ash - principlenodeptr->nextasnodeptr;
principlenodeptr->nextasnodeptr - NULL;
Map [principlenodeptr->x] (principlenodeptr->yj (principlenodeptr->z I. condition-

CHECKED;
if (verbose -- TRUE)

prAntf(C\n Getting principle node %d,%d,%d from agenda list",
principlenodeptr->x, principlenodeptr->y, principlenodeptr->z);

return principlenodeptr;

/*DELETE AGENDA LIST.. Deletes entire agenda list to clean up *

void delete agenda listo(

ASNODEL INK temppt r;

if (verbose -- TRUE)
printf("\n Goal reached, deleting remaining agenda list");

while(ash !NULL)

tempptr -ash;
ash - ash->riextasnodeptr;

154

tempptr->nextasnodeptr - NULL;
if(verbose -- TRUE) printf("\n Deleting vertex %d,%d,%d from agenda list",

tempptr->x, tempptr->y,tempptr->z);
free (tempptr);

/*MARK VERTEX PATH. .Annotates previous node in as array node

void mark vertexpath (prevasnode, currentasnode)

ASNODELINK prevasnode, currentasnode;

if (verbose -- TRUE)
printf("\n Vertex array position %d,%d,%d.prev gets %d,%d,%d",

currentasnode->x, currentasnode->y, currentasnode->z,
prevasnode->x, prevasnode->y. prevasnode->z);

Map fcurrentasnode->x] (currentasnode->yJ [currentasnode->z] .xprev
prevasnode->x;

Map (currentasnode->x] [currentasnode->y] (currentasnode->z] .yprev -
preva snode->y;

Map [currentasnode->x] [currentasnode->y] (currentasnode->zJ zprev -
preva snode->z;

1* points to current node on the agenda */
Map[currentasnode->x] (currentasnode->y] [currentasnode->zJ .ptrtoagenda-

currentasnode;

/*CREATEPATHLIST. .Creates and builds a path to goal list *
/*head of list is first node after vehicle, last node is goal

NEWPATHLINK create path list (goalptr)

ASNODELINK goalptr;

NEWPATHLINK pthd, newptr;

if (verbose -- TRUE)
printf("\n Goal reached, creating path list as follows:");

1* put goal position in list *
newptr - (Newpath*) malloc (sizeof (Newpath));
newptr->xpath - goalptr->x;
newptr->ypath - goalptr->y;
newptr->zpath - goalptr->z;
newptr->nextnewnode - NULL;
if (storemissiondata -- TRUE)
fprintf(missionofp,"%c %d %d %d %d %d\n",'$',

newptr->xpath,
newptr->ypath,
newptr->zpath,
0,
6);

pthd = newptr;
if (verbose -- TRUE)
printf ("\n %d, %d, %d", newptr->xpath,newptr->ypath, newptr->zpath);

/* trace back through path placing in list until AUV reached *
/* printf("\n\n\n\nAUV POSITION IS %d,%d,%d\n\n\n\n",

Auv.grid.xpos,Auv.grid.ypos,Auv.grid. zpos);
printf("\n\n\n\nARRAY PREV POSITION IS %d,%d,%d\n\n\n\n",

Map (newptr->xpath] (newptr->ypath] (newptr->zpathJ .xprev,

155

Map (newptr->xpath][newptr->ypath]I[newptr->zpath].yprev,
lMapfnewptr->xpath] [newptr->ypath] [newptr->zpath] zprev); *

while (((Map Inewptr->xpath] (newptr->ypathl Cnewptr->zpath) .xprev!-
Auv.grid.XPos) 11
(Maptnewptr->xpath] (newptr->ypathj (newptr->zpath) .yprev !

Auv.grid.ypos) 11
(Map~newptr->xpathi (newptr->ypath] (newptr->zpathj .zprev !

Auv.grid.zpos)))

newptr - (Newpath*)mlloc (sizeof (Newpath));
newptr->xpath - Map[pthd->xpath] [pthd->ypath] [pthd->zpath] .xprev;
newptr->ypath - Maplpthd->xpath] (pthd->ypath] (pthd->zpathl .yprev;
newptr->zpath - Map[pthd->xpath] [pthd->ypath] [pthd->zpath] .zprev;
newptr->nextnewnode - pthd;
if (storemissiondata -- TRUE)
fprintf(Missionofp,"%c %d %d %d %d %d\n,$',

newpt r->xpath,
rewptr->ypath,
newptr->zpath,
0,

6);
pthd - newptr;
if (verbose -- TRUE)
printf ('\nPath %d, %d, %d" ,newptr->xpath, newptr->ypath, newptr->zpath);

return pthd;

/*ODD..Determines if a value is odd

int odd(value)

mnt value;

if (value % 2 -- 0)
return EVEN;

else
return ODD;

/EE.Determines if a value is even *

mnt even(value)

mnt value;

if (value % 2 -- 0)
return ODD;

else
return EVEN;

/*COMPUTE DIST. .Determines the distance between two nodes *

float compute dist (xloc,xpos,yloc,ypos, zloc,zpos)

mnt xloc,xpos,yloc,ypos,zloc, zpos;

156

double dist;

dist - sqrt((double) (((xloc - xpos)*(xloc - xpos)) +
((yloc - ypos)*(yloc - ypos)) +
((zloc - zpos)*(zloc - zpos))));

if(verbose -- TRUE)
printf("\nThe distance between %d,%d,%d and node %d,%d,%d is %f",

xloc,yloc,zloc,xpos,ypos,zpos,(float)dist);
return (float)dist;

/****** ** ****** **** ** **** **** ** **** ** **** ****** ********** *************

/*INSIDE AREA..Determines if a node is inside the search area *1

int insidearea(x,y,z)

int x,y,z;

if (x >- 0 && x < MAXX && y >- 0 && y < MAXY && z >- 0 && z < MAXZ)
return TRUE;

else
return FALSE;

** ****** ****** **** ** ********** **** **** **** ******** ********** ********

/*IS ADJACENT..Determine if a node is adjacent to the vehicle

int isadjacent(ab,c,d)

int a,b,c, /* node location being analyzed */
d; /* state of location being anazyzed */

int e,f,g; /* holder for vehicle position */

e - Auv.grid.xpos;
f - Auv.grid.ypos;
g - Auv.grid.zpos;
if((a <- e+l 66 a >- e-1) 66

(b <- f+l 66 b >- f-i) &
(c <- g+i 66 c >- g-i) 66
(c !- AUV))

return TRUE;

else

return FALSE;

/*ADJACENT NODE..Returns true of one node is adjacent to the other

int adjacent node(x,y,z,nextx,nexty,nextz)

int xy,z,nextx,nexty,nextz;

if((nextx <- x+1 && nextx >- x-1) 66

157

(nexty <- y+1 & nexty >- y-1) &
(nextz <- z+l &&nextz >- z-1))

return TRUE;
else
return FALSE;

/*CLEAN UP. .Clean up after running program *

void clean up()

print active list 0;
if (storemisiondata - TRUE)

fclose(missionofp); /* close the mission file *
fclose(trackofp); /* close the track file *

/*TEST_-ADVANCE. .Test routine for advancing AUV through world. Does not *
/*currently employ a-star or other search. *

void test-advance (testnode)

NODELINK testnode;

/* clean up old AUV position *
Wld(Auv.grid.xpos] [Auv.grid.ypos] EAuv.grid.zposj .state = VISITED;
Wld[Auv.grid.xpos] jAuv.grid.ypos) [Auv.grid.zpos] .visited - TRUE;
/* send updated node data from former AUV position to file *
/* $ represents vehicle data *
if (storemissiondata -- TRUE)

fprintf(missionofp,"%c %d %d %d %d %d\n", $,o
Wld[Auv.grid.xpos] [Auv.grid.ypos] [Auv.c-rid. ZPos].grid.xpos,
Wld[Auv.grid.xpos] [Auv.grid.ypos] EAuv.grid.zpos] .grid.ypos,
Wld(Auv.grid.xpos] [Auv.grid.ypos] [Auv.grid.zpos] .grid.zpos,
Wld[Auv.grid.xpos] EAuv.grid.ypos] [Auv.grid.zposj .dir,
Wld[Auv.grid.xpos] (Auv.grid.ypos] (Auv.grid.zpos) .state);

I* update AUV position and status *
Auv.grid.xpos - testnode->x;
Auv.grid.ypos = testnode->y;
Auv.grid.zpos = testnode->z;
Auv.x - testnode->x;
Auv.y - testnode->y;
Auv.z - testnode->z;
Wld[testnode->xJ (testnode->y] (testnode->z] .state -AUV:
if (verbose - TRUE)
printf("\nAUV position - %,d%"

Wldftestnode->xJ (testnode->y' rtestnode->zJ .grid.xpos,
Wld~testnode->x] (testnode->y] [testnode->z) .grid.ypos,
Wldftestnode->xI [testnode->y] [testnode->zJ .grid.zpos);

/* send updated AUV information to file *
if(storemi.ssiondata - TRUE)
I' $ represents vehicle datd *
fprintf(missionofp,"%c %d %d %d %d %d\n", S',

Wld(Auv.grid.xpos] EAuv.grid.ypos] EAuv.grid.zpos] .grid.XPos,
Wld(Auv.grid.xposj (Auv.grid.ypos) [Auv.grid.zpos] .grid.ypos,
Wld(Auv.grid.xpos] [Auv.grid.ypos] [Auv.grid.zpos] .grid.zpos,
Wld[Auv.grid.xpos] (Auv.grid.yposl (Auv.grid.zposl .dir,
Wld[Auv.grid.xpos] [Auv.grid.ypos] (Auv.grid.zpos .,state);

158

/* remove visited node from visit list */

delete-from-visit_list (testnode->x, testnode->y, testnode->z);

/*PRINT ACTIVE LIST.. Prints contents of active node list to screen

void print_active-list()

SUBAREALIN(ptrsubarea;
NODELINK ptrnode;

ptrsubarea - zh;
while(ptrsubarea !- NULL)

if (verbose -- TRUE) printf ("Subarea is %d\n1',ptrsubarea->subareanum);
ptrnode = ptrsubarea->nodelistptr;
while(ptrnode !-NULL)

if(verbose -- TRUE) printf(" Node is %d,%d,%d\n",
ptrnode->x,ptrnode->y, ptrnode->z);

ptrnode -ptrnode->nextnodeptr;

ptrsubarea -ptrsubarea->nextsubareaptr;

/*PRINT AGENDA LIST. .Prints contents of active node list to screen

void print agenda listoC

ASNODELINK ptrasnode;

ptrasnode - ash;
while(ptrasnode !- NULL)

if(vcvrbose -- TRUE) printf('\n Agenda node is %d,%d,%d",
ptrasnode->x, ptrasnode->y, ptrasnode->z);

ptrasnode = ptrasnode->nextasnodeptr;

/*PRINTPATHLIST. .Prints contents of active node list to screen *

void printypath list (pathptr)

NEWPATHLINK pathptr;

while(pathptr !-NULL)

if (verbose -- TRUE) printf('\n Path node is %d,%d,%d',
pathptr->xpath, pathptr->ypath, pathptr->zpath);

pathptr - pathptr->nextnewnode;

159

146

APPENDIX C: TWO-DIMENSIONAL GRAPH SEARCH EVALUATION TOOL
SOURCECODE

Title: search2d.h
Author: Mark Compton
Course: Thesis
Date: 12 Mar 92

Description: This program builds a two dimensional search area designed to
test graph type searches for theses work. The tool is called
2-D GRAPH SEARCH EVALUATION TOOL.

Support: search.c (contains main menu for building tool)
search support.c (contains support routines for building tool)

/*Preprocessing Directives**/
4define BOXWIDTH 15.0 /* box width */
#define LOXHEIGHT 15.0 /* box height
#define MAXX 63 /* number of nodes in x direction */
#define MAXY 63 /* number of nodes in y direction */
#define SUBX 7 /* number of subareas in x direction */
#define SUBY 7 /* number of subareas in y direction */
#define SUBXNODES 9 /* number of nodes in each subarea in x direction */
#define SUBYNODES 9 /* number of nodes in each subarea in y direction */
#define MAXSTRING 20 /* for file names */

#define ODD 1 /* defines if a value is odd */
#define EVEN 0 /* defines if a value is even */

#define SLOW 1000000 /* defines playback speeds */
#define MEDIUM 150000
#define FAST 15000

/- defines states of a node */
#define FREE 0 /* nothing at node */
#define OBSTACLE 1 /* obstacle at node */
#define AUV 2 /* vehicle (Autonomous Underwater Vehicle) */
#define ADJACENT 3 /* node adjacent to vehicle */
#define ACTIVE 4 /* detected, non-object, not visited */
#define VISITED 5 /* node has been previously visited */
#define ASPATH 6 /* local path selected by A-Star Search */

/* define colors of objects in search world */
#define FREECOLOR RGBcolor(155,155,200);
#define OBSTACLECOLOR RGBcolor(0,0,0);
#define AUVCOLOR RGBcolor(0,0.255);
#define ADJACENTCOLOR RGBcolor(110,45,0);
#define ACTIVECOLOR RGBcolor(255,255,0);
#define VISITEDCOLOR RGBcolor(255,255,255);
#define DIRECTIONCOLOR RGBcolor(255,255,0):
#define ASCOLOR RGBcolor(255,0,0);

#define STOREOBSTACLES 10 /* menu pick for storing obstacle data '/
#define RETRIEVEOBSTACLES 20 /* menu pick for retrieving obstacle data /
#define RETRIEVEMISSION 30 /- menu pick for vehicle track */
#define PLAYBACKMISSION 40 /* menu pick for mission playback 5/

#define PAUSEMISSION 42 /* menu pick to pause mission playback 5/

#define RESUMEMISSION 44 /* menu pick to resume mission playback */
#define CLEARAREA 50 /* menu pick to exit program */

160

#define PLAYBACKSPEEDSLOW 60 /* menu pick for playback speeds */
#define PLAYBACKSPEEDMEDIUM 61 /* menu pick for playback speeds */
#define PLAYBACKSPEEDFAST 62 /* menu pick for playback speeds */
#define EXIT 70 /* menu pick to exit program */

/* defines direction of vehicle */
#define NODIR 0
#define N 1
#define NE 2
#define E 3
#define SE 4
#define S 5
#define SW 6
#define W 7
#define NW 8

************* ***/

char outnode[MAXSTRING]; /* output file for nodes */
FILE *obstacleofp; /* pointer for sending obstacles to file */
FILE *obstacleifp; /* pointer for receiving obstacles from file */
FILE *missionifp; /* pointer for receiving mission from file */
char inobstacle[MAXSTRING]; /* input file name for obstacles */
char inmission[MAXSTRING]; /* input file name for mission */
int mouseselect - FALSE; /* toggle for mouse selections */
int left mouse select - FALSE; /* toggle for mouse selections */
int playthemission - FALSE; /* flag for playback of mission */
int playbackspeed - MEDIUM; /* initializes playback speed */

********************************* **************************

struct location

int xpos,yp5-s;
/* grid coordinates */1;

typedef struct location Location;

struct node /* basic structure of a search area node */

Location grid; /* grid coordinates of node */
int area; /* subarea node is located in */
double x,y; /* world position of node */
int dir; /* direction node is looking */
int state; /* status of node FREE, OBSTACLE, AUV*/

typedef struct node Node;

Node Wpt(MAXX] MAXY]; /* 2-D array for storing search area nodes */

struct missiondata

char info; /* type of information for display */
Location grid; /* grid coordinates of node */
int dir; /* direction vehicle is looking */
int state; /* status of node */
float distrav;
int auvsteps;
float eratio;
float estepratio;
struct missiondata *nextmissiondata; /* points to next mission data */

typedef struct missiondata Missiondata;
typedef Missiondata *MISSIONLINK; /* pointer to Missiondata */
MISSIONLINK head; /* points to head of list */
MISSIONLINK current; /* points to item in mission list */
MISSIONLINK prey; /* points to previous in mission list */

161

d I ** **** **

Title: search2d.c
Author: Mark Compton
Course: Thesis
Date: 12 Mar 92

Description: This program builds a two dimensional search area designed to
test graph type searches for theses work.

include * * * * * * **

#include <stdio.h>
*include <stdlib.h>

#include <math.h>
#include "gl.h"
#include "device.h"
#include "search2d.h"
#include "search support2d. c"

main 0

char response - 'n';
char answer - n.;
char acknowledgement - 'n';
int mainmenu;
short value; /* the value from the Event Queue */
float wx,wy; /* world coord location of the mouse */
long i,j; /* counters for send to file */
int hititem; /* variable holding hit name

/* Setup for retrieving mission data */
printf("\n\nMission data may be retrieved from a file ");
printf("\nthen displayed by selecting Retrieve Mission in");
printf("\nthe menu.\n\n ");
printf("Will you be retrieving mission data from a file? ");
scanf ("%c",&response);
if (response = 'y' I response =- 'Y')

printf("\n\nPlease enter the mission input file name: \n");
scanf("%s",inmission);

/* Setup for retrieving obstacle data */
scanf("%c",&answer); /* hack to clear carrage return from buffer */
printf("\nObstacle data may be retrieved from a file ");
printf("\nthen displayed by selecting Retrieve Obstacle in");
printf("\nthe menu.\n\n ");
printf("Will you be retrieving obstacle data from a file? ");
scanf ("%c", &answer);
if (answer -- 'y' I answer -- 'Y')

printf("\n\nPlease enter the obstacle input file name: \n");
scanf("%s",inobstacle);

/* initialize the graphics system */
initialize();
/* make the popup menus
mainmenu - makethemenuso;
/* set the world coordinate systam */
ortho2(0.0, (float)XMAXSCREEN,0.., ffloat)YMAXSCREEN);
/* stay inside this display loop until the

Window Manager terminates us...*/
/* first time thru for drawing area */
drawthearea();
while(TRUE)

/* is there anything on the Event Queue? */
while(qtest() !- 0)

162

switch (qread (&value))

case REDRAW:
reshapeviewport(};
break;

case LEFTMOUSE:
/* if the button has been depressed */
if(value -- 1)

/* compute the world coordinate of the mouse
wx = getvaluator(MOUSEX);
wy = getvaluator(MOUSEY);
/* left mouse-select - TRUE; */
check_nodeinfo(wx,wy);

break;
case MIDDLEMOUSE:

/* if the button has been depressed */
if(value -= 1)

/* compute the world coordinate of the mouse
wx - getvaluator(MOUSEX);
wy - getvaluator(MOUSEY);
/* mouse-select - TRUE; */
putobstacle(wx,wy);

break;
case MENUBUTTON:

if(value -- 1)

hititem - dopup(mainmenu);

processmenuhit(hititem);
/* value = 0; *

break;
default:

break;
} /* end switch */

} /* endif there was something on the queue */
if (playthemission -- TRUE)

playbackmission (;

/* end while loop */

*** ******** ****** ***

Title: searchsupport.c
Author: Mark Compton
Course: Thesis
Date: 12 Mar 92

Description: This program contains routines which support the building of
a two dimensional graph search evaluation tool.

*************************** ** ******** ********** ** **** **

#include <stdio.h>
*include <stdlib.h>

#include <math.h>

/***/*
/*INITIALIZE..Establish IRIS graphics preferences

****** ****** **** ******** ** ****** ** ****** ** *************************

initialize()

163

/* set up a preferred size for the window */
prefsize(XMAXSCREEN+1,YMAXSCREEN+I);
/* set up a preferred position for the window */
prefposition(0,XMAXSCREEN, 0,YMAXSCREEN);
/* open a window for the program */
winopen("pick");
/* put a title on the window */
wintitle("Pick -- Middle Mouse is the Pick ");
/* set color type *1
RGBmode);
/* put the IRIS into double buffer mode */
/* doublebuffero; */
singlebuffer(0;
/* configure the IRIS (means use the above command settings) */
gconfig();
/* queue the redraw device */
qdevice(REDRAW);
/* queue the menubutton *1
qdevice(MENUBUTTON);
/* queue the left mouse button */
qdevice(LEFTMOUSE);
/* queue the middle mouse button */
qdevice(MIDDLEMOUSE);
/* select flat shading */
/* only works on the 4D*/

#ifdef FLAT
shademodel(FLAT);

#endif FLAT

I**** ***/*

/*MAKETHEMENUS..Performs all the menu construction call
/***
int makethemenus()

int topmenu; /* top level menu's name

/* build the top level menu */
topmenu - defpup("Search Menu %t I Store Obstacles %xlO \

I Retrieve Obstacles %x20 \
I Retrieve Mission Data %x30 \
I Playback Mission %x40 \
I Pause Mission Playback %x42 \
Resume Mission Playback %x44 \

I Clear Area %x50 \
I Playback Slow %x60 \
I Playback Medium %x61 \
I Playback Fast %x62 \
I Exit %x70 ");

/* return the name of this menu */
return(topmenu);

/** ************** ********** ** **** ****************************** **********

/*PROCESSMENUHIT..Performs all the menu actions */

processmenuhit(hititem)

irt hititem; /* item hit on the popup menus */

switch (hititem)

164

case STOREOBSTACLES:
storedata();
break;

case RETRIEVEOBSTACLES:
retrieveobstacledata);
break;

case RETRIEVEMISSION:
retrievemission();
break;

case PLAYBACKMISSION:
playthemission - TRUE;
current - head;
prey - head;
break;

case PAUSEMISSION:
playthemission - FALSE;
break;

case RESUMEMISSION:
playthemission - TRUE;
break;

case CLEARAREA:
drawthearea);
playthemission - FALSE;
break;

case PLAYBACKSPEEDSLOW:
playbackspeed - SLOW;
break;

case PLAYBACKSPEEDMEDIUM:
playbackspeed = MEDIUM;
break;

case PLAYBACKSPEEDFAST:
playbackspeed = FAST;
break;

case EXIT:
exit(0);
break;

default:
break;

/* end switch */

/*DRAWTHEAREA..Draws the graph search environment *1
I ********************* ***************************

drawthearea()

float startx,starty; /* starting x and y of the grid */
float x,y,c,d; /* temp coord loc */
long ij,a,b; /* temp loop counters */

/* draw the background color */
RGBcolor(0,255,255);
clear 0;
/* put up some help text */
RGBcolor(255,0,0);
cmov2i(10,1000);
charstr("GRAPH SEARCH EVALUATION TOOL");
RGBcolor(255,0,0);
cmov21(10,998);
charstr(" .._)

RGBcolor(WU,0);
cmov2i(10,985);
charstr(" by Mark Compton");
RGBcolor(0,0,255);

165

cmov2i1(1000,1000);
charstr("MOUse Functions");
cmov2i (1000, 998);
charstr("___ ____

cmov2i (1-00, 985-);
charstr("Left: Node Information");
cmov2i (1000, 970);
charstr("'Middle: Build Obstacle"):
cmov2i1(1000, 955);
charstr ("Right: Menu");
cmov2i (1000, 935);
charstr("Mouse Select Data");
cmov21 (1000, 933);
charstr(1___ ______)
cmov2 (1000,920);
charstr("x - y
cmov2 (1000, 905);
charstr("state -
cmov2 (1000,890);
charstr("area -
RGBcolor (0, 0, 255);
cmov2i (1000,100);
charstr("Statistics"l);
cmov2 (1000, 98);
charstr("_____
cmov2 (1000, 80);
charstr("Graph steps-
cmov2 (1000,65);
charstr("Distance traveled-
cmov2 (1000,50);
charstr("Effective dist ratio-
/* compute the start of the grid *
startx - ((XMAXSCREEN - MAXX * BOXWIDTH)/2.0)-145.0;
starty = ((YMAXSCRF-EN - MAXY * BOXHEIGHT)/2.0)-20.0;
/* draw background subareas */

for(a-0; a < MAXY/SUBYNODES; ++a)

for(b-0; b < MAXX/SUBXNODES; ++b)

/* compute the color *
if (odd(a) -= 0)

if (odd(b) =- 0)

RGBcolor (0,255,0);

if (odd(b) -- 1)

RGBcolor (155,0,155);

if (odd(a) - 1)

if (odd(b) - 0)

RGBcolor (155,0,155);

if (odd(b) -- 1)

RGBcolor (0,255,0);

/* compute the lowerleft of the box to fill *
c - (startx + a*BOXWIDTH*SUBXNODES);
d - (starty + b*BOXHEIGIT*SUBYNODES);
/* draw the filled rectangles *
rectf (c, d, c+BOXWIDTH*StIBXNODES

d+BOXHEIGHT*SUBYNODES);

166

/* draw boarder *
RGBcolor (0, 0,0);
linewidth(10);
rect (startx-2. 5, starty-2 .5,

startx+5.0+ (BOXWIDTH*MAXX) ,starty+5 .0+ (BOXHEIGHT*MAXY));
/* draw all the nodes */
for(J-0; j < MAXY; j-j+l)

for(i-0; i < MAXX; i-i+l)

/* compute the lowerleft of the box to fill *
x - (startx + i*BOXWIDTH) + 3.0;
y - (starty + J*BOXHJEIGHT) + 3.0;
/* fill in Node structure */
Wpt~iJ[jj.x - x+BOXWIDTH/2.0;
Wpti)tJ].y - y+BOXWIDTH/2.0;
Wpt~i][j].state - FREE;
WpttiJ~jJ.grid.xpos - i
Wpt[iJ[j].grid.ypos - j
Wpt[i][j].area - subarea(i,j);
/* determine color of node */
if (Wpt(i]j].state -OBSTACLE)

OBSTACLECOLOR;
if (Wpt(i][j].state - FREE)

FREECOLOR;
if(Wpt[i][j].state - AUV)

AUVCOLOR;
if(Wpt(i][j].state - ADJACENT)

ADJACENTCOLOR;
if(Wptii[j].state -- ASPATH)

ASCOLOR;
/* draw the filled rectangles *
rectf (x, y, x+BOXWIDTH-3 .0, y+BOXHEIGHT-3 .0;

/*ODD..Determines if a value is odd or even *

odd (value)

mnt value;

if (value % 2 - 0)
return EVEN;

else
return ODD;

/*INSIDE. .determines if (x,y) is inside the box defined by the
/*coordinates (xmin,ymin) -(xmax,ymax)

mnt inside (x, y, xmin, ymin, xmax, ymax)

float x,y; /* location of the cursor *
float xmin,ymin,xmax,ymax; /* bounding box to check if cursor is insioe *

if((xmin <- x) && (x <- xmax) && (ymin <- y) && (y <- ymax))

167

return (TRUE):

else

return (FALSE);

/*STOREDATA..Stores node data to file if requested

storedatao(

int i,j;

obstacleofp - fopen("obstacle-file","w");
for(i-O: i < MAXY; i-i+l)

for(j-O; j < MAXX; j-j+l)

if(Wpt[i][j].state -- OBSTACLE)

fprintf (obstacleofp,"%d %d\n",Wpt [ii Ei].grid.xpos,
Wpt~i)] .grid.ypos);

f close (obstacleofp);

/*RETRIBVEOBSTACLEDATA. .Retrieves obstacle data from file if requested *

retrieveobstacledatao(

mnt x,y;

obstacleifp = fopen (inobstacle. "r");
while(facanf(obstacleifp, "%d%d', &x,fiy) !- EOF)

Wpttxly].state - OBSTACLE;
draw-node(Wptfxlfy].grid.xpos,Wpt(xhy].grid.ypos);

fclose (obstacleifp);

/*RETRIEVEMISSION. .Retrieves mission data from file if requested *
/*Stores mission data in linked list for future use *

ret rievemissiono(

int x~y, nodedir,nodestate, au;
float di,er,es;
char w; /* w indicates type of line to follow *
MISSIONLINK currentptr,previousptr;

/* draw the print information background *
RGBcolor (0, 0, 0)

168

recif (270, 420, 730, 580);
RGBcolor (255,0,0);
rectf (300,450,700,550);
RGBcolor (0, 0, 0);
cmov2i (400, 500);
charstr("STAIIDBY ---- LOADING MISSION");
missionifp - fopen (inmission, "r");
facanf(missionifp, "%c%d%d%d%d%f%d%f%f",Lw, Lx,&y, &nodedir,&nodestate,

&di,&au,&er,&es);
head -malloc (sizeof (Missiondata));
head ->info - W
head ->grid.xpos - x
head ->grid.ypos - y
head ->dir - nodedir;
head ->state - nodestate;
head ->distrav - di;
head ->auvsteps - au;
head ->eratio - er;
head ->estepratio = es;
previouspir = head;

while (fscanf (missionifp, "%c%d%d%d%d%f%d%f%f",
Lw, Lx, y, Lnodedir, &nodestate,
&di,&au,&er,&es) !- EOF)

currentptr -malloc (sizeof (Missiondata));
currentptr ->info - W
currentptr ->grid.xpos - x
currentptr ->grid.ypos - y
currentptr ->dir - nodedir;
currentptr ->state - nodestate;
currentptr ->distrav - di;
currentptr ->auvsteps - au;
currentptr ->eratio - er;
currentptr ->estepratio - es;
previousptr ->nextmissiondata - currentptr;
previousptr -currentptr;

fclose (missionifp);
drawtheareao; 1* get rid of message ~

/*KILLTIME. .Kills processor time for visual purposes in drawing

kill-time()

mnt a,b,c;

for (a- ; a<playbackspeed; ++a)
b -10000000;
c & *b;

/*PLAYBACKMISSION. .Playback of mission data

playbackmission 0

if (current -- NULL)
playthemission - FALSE;

else

169

if (current !- NULL)

/* world information to follow *
if(current->info -- '% &&

Wpt (current->grid.xpos] [current->grid.ypos] state I-current->state)

/* assign input state to node *
Wpt (current->grid.xpos] (current->grid.ypos] state =current->state;

draw_node (Wpt lcurrent->grid.xposJ fcurrent->grid.ypos] .grid.xpos,
Wpt~current->grid.xpos] tcurrent->grid.ypos] .grid.ypos);

/* search path information to follow *
if(current->info- SI

current->info -

/* assign input direction to node *
Wpt (current->grid.xpos] [current->grid.ypos] .dir = current->dir;
/* assign input state to node */
Wpt[current->grid.xpos] (current->grid.ypos] .state - current->state:
/* update vehicle graph step count *
if (current->state - 2)
f
update-node-info (current->grid.xpos, current->grid.ypos,

current->distrav, current->auvsteps,
current->eratio);

draw-node (Wpt Ecurrent->grid.xpos] (current->grid.yposl .grid.xpos,
Wpt~current->grid.xpos] [current->grid.ypos] .grid.ypos);

kill-timeo; /* used for better visual presentation *

prev = current;
current = current->nextmissiondata;
/* free(prev); use only if desire to delete list *

/*SUBREA.Determines which subarea a node is in *

subarea (a,b)

mnt a,b; /* feed in the grid coordinates *

mnt i.j,row,coiumn,area;

for (i - 1; i <- SUBY; ++i) /* step thru subarea rows ~

for (j - 1; j <- SUBX; ++j) /* step thru subarea columns *

if (b >- (i-l)*SUBYNODES &&b < i*SUBYNODES)

row-

if (a >- (j-l)*SUBXNODES £ a < J*SUBXNODES)

column - j

if (odd(row))

area = ((row-l)*SUBY)+column;

else

170

area - ((row*SUBY)+l)-column;

return area;

a /*DRAW NODE.. Draws a square at the node

draw-node (nodex, nodey)

int nodex,nodey;

float 3tartx,starty; /* starting x and y of the grid *
float x,y ; * temp coord loc

/* compute the start of the grid *
startx - ((XMAXSCREEN - MAXX * BOXWIDTH)/2.0)-145.0;
starty = ((YMAXSCREEN - MAXY * BOXHEIGHT)/2.0)-20.0;
1* compute the lowerleft of the box to fill *
x - (startx + nodex*BOXWIDTH) + 3.0;
y - (starty + nodey*BOXHEIGHT) + 3.0;
/* determine the color of the node *
determine color (nodex, nodey);
/* draw tHe filled rectangle *
rectf (x, y, x+BOXWIDTH-3.0, y+BOXHEIGHT-3.0);
/* if vehicle determine direction and draw *
if CWpt~nodex][nodey].state -- AUV)
draw-node direction(nodex,nodey);

/*DETERMINE COLOR.. Determines the color of a node

determine-color (nodex,nodey)

mnt nodex,nodey;

if (Wpt(nodex] (nodey] .state -- FREE)
FREECOLOR

if (Wpt[nodexl(nodey].state -OBSTACLE)
OBSTACLECOLOR

if (Wpt(nodex][nodey].state - AUV)
AUVCOLOR

if (Wpt[nodex)[nodeyl.state -- ADJACENT)
ADJACENTCOLOR

if CWpt(nodex](nodey].state - ACTIVE)
ACTIVECOLOR

if (Wpt[nodex][nodey].state -- VISITED)
VISITEDCOLOR

if (Wpt(nodex] [nodey] .state -- ASPATH)
ASCOLOR

/*DETERM4INE VEHICLE DIRECTION. Determines direction of vehicle

determine vehicle direction Cdirx,diry)

int dirx,diry;

171

float p, q;

/* determine origin of direction pointer for vehicle movement *
p - dirx+(BOXWIDTH/2.O)-2.0;
q - diry+(BOXHEIGHT/2.O)-2.0;
/* if auv draw direction */
draw-node-direction(dirx,diry);

/*DRA~W NODE DIRECTION.. Draw the direction pointer of the node

draw-node direction (nodex,nodey)

int nodex,nodey; /* node position being analyzed *

float startx~starty; /* starting x and y of the grid *
float x,y ; * temp coord loc */
float a,b; 1* center of location of vehicle *

1* compute the start of the grid */
startx - ((XMAXSCREEN - MAXX * BOXWIDTH)/2.0)-145.0;
starty - ((YMAXSCREEN - MAXY * BOXHEIGHT)/2.0)-20.0;
/* compute the lowerleft of the box to fill *
x - (startx + nodex*BOXWIDTH) + 2.0;
y - (starty + nodey*BOXHEIGHT) + 2.0;
1' determine origin of direction pointer for vehicle movement ~
a - x+(BOXWIDTH/2.0)-2.0;
b - y+(BOXHEIGHT/2.0)-2.0;
DIRECTIONCOLOR;
linewidth (2);
if(Wpt~nodex][nodey].dir -- N)

move2 (a,b);
draw2 (a..b+5.5);

if(Wpt(nodex]lnodey].dir -- NE)

move2 (a,b);
draw2 (a+5.5,b+5.5);

if(Wptfnodex]Enodey].dir -=E)

move2 (a,b);
draw2 (a+5. 5,b);

ifCWptfnodex)(nodey].dir -- SE)

move2 (a, b);
draw2 (a+5.5,b-5.5);

if(Wpt(nodexj(nodeyj.dir S-)

move2 (a,b);
draw2 (a,b-5.5);

if(Wptlnodex][nodey].dir -- SW)

niove2 (a,b);
draw2 (a-5.5,b-5.5);

if(Wpt~nodex][nodey].dir -- W)

172

move2 (a,b);
draw2 (a-5.5,b);

if(Wpt[nodex] nodey].dir -- NW)

move2(a,b);
draw2(a-5.5,b+5.5);

if(Wpt[nodex][nodey].dir -- NODIR)

move2 (a,b);
draw2 (a,b);

/************* ***/*

/*MOUSEX TO BOX POSITION.Determines what node mouse is pointing to
/**/*

mousex to-boxyposition(wx)

float wx; /* mouse position */

int mousex; /* mouse position converted to grid position */
flcat startx; /* lower left hand corner of area */

startx - ((XMAXSCREEN - MAXX * BOXWIDTH)/2.0)-145.0;
mousex - (wx - startx)/BOXWIDTH;
return mousex;

**

/*MOUSEY TO BOX POSITION..Determines what node mouse is pointing to/**** ** ******** ** ************ ** ** ********************************

mouseyto box position(wy)

float wy; /* mouse position */

int mousey; /* mouse position converted to grid position */
float starty; /* lower left hand corner of area */

starty - ((YMA.3CREEN - MAXY * BOXHEIGHT)/2.0)-20.0;
mousey - (wy - starty)/BOXWIDTH;
return mousey;

/******** ******** **************** *************************

/*PUT OBSTACLE..Draws an obstacle at indicated position and updates */
/*the array */
/**** ****************** **** ** ********** ** ***********************

put obstacle(wx,wy)

float wx,wy; /* mouse position */

int i,j;

i - mousex to boxlsition(wx);
j - mousey to boxposition(wy);

173

160

/* use grid position of mouse to update node contents */
update node info(Wpt(i][jI.grid.xpos,Wpt[i] [j.grid.ypos);
/* set-the color of the node to be drawn */
if(Wpt[i][jl.state !- OBSTACLE)

Wpt[i][j].state - OBSTACLE;

else

Wpt[i][j].state = FREE;

/* draw the specified node */
drawnode(Wpt[i][j[.grid.xpos,Wpt[i](jl.grid.ypos);

I.**
/*CHECK NODE INFO..Determins mouse hit and calls for info display at node*/
****A*.***************************..*.n.******************

check node info(wx, wy)

float wx,wy; /* mouse position */

int i,j;

i - mousex to boxposition(wx);
j - mouseytoboxposition(wy);
,* use grid position of mouse to update node contents */
update_nodeinfo(Wpt[i][j.grid.xpos,Wpt~i1(ji.grid.ypos);

/** ****** ********** ***** ** ***** ** **** **** ** **** **** ** **** **** *** *******

/*UPDATE NODE INFO..Updates the display information for a node

update nodeinfo(x,y, distravelstep,efratio)

int x,y; /* position of node of interest *,
int step; /* number of steps taken by auv
float distravel, /* cumulative distance traveled by auv

efratio; /* efficiency ratio based on distance 1

char strl[20],
str2[20],
str3[20),
str4[20],
str5[201,
str6[20]; /* screen data */

static int mousex,mousey,
mousestate,
mousearea; /* mouse info to screen */

/* pull in information for indicated grid position */
mousex - Wpt[x][y].grid.xpos;
mousey - Wpt[xl[yl.grid.ypos;
mousestate - Wpt[xJ[yl.state;
mousearea - Wpt[xj[y].area;
/* draw the print information background /
RGBeolor(0,255,255);
rectf(998,0,XMAXSCREEN, YMAXSCREEN);
/* print information to screen */
/* put up some help text */
RGBcolor(255,0,0);
cmov2i(10, 1000);

174

charstr ("GRAPH SEARCH EVALUATION TOOL");
RGBcolor (255,0,0);
cmov2i (10,998);
charstr ("___ _______

RGBcolor (0,0,0);
cmov2i (10, 985);
charstr(" by Mark Compton");
RGBcolor (0,0,255);
cmov2i (1000,1000);
charstr("Mouse Functions");
cmov2i (1000, 998);
charatr("___ ____

cmov2i (1000,985);
charstr("Left: Node Information');
cmov2i (1000,970);
charstr("Middle: Build Obstacle");
cmov2i (1000, 955);
char st r("Right: Menu");
cmov2i (1000,935);
charstr("Mouse Select Data");
cmov2i (1000, 933);
charstr("___ ___

sprintf(strl, "x-%~=%d",rnousex,mousey);
cmov2 (1000,920);
charstr(strl);
sprintf(str2, "state =%d",mousestate);

cmov2 (1000,905);
charstr(str2);
sprintf(str3, "area -%d',mousearea);

cmov2 (1000,890);
charstr (str3);
RGBcolor (0,0,255);
cmov2i (1000, 100);
charstr ("Statistics");
cmov2 (1000,98);
charstr("_____
sprintf(str4, "Graph steps - %d",step);
cmov2 (1000, 80);
charstr(str4);
sprintf(str5, "Distance traveled - %f",distravel);
cmov2 (1000, 65);
charstr(str5);
sprintf(str6, "Effective dist ratio - %f",efratio); 1* min dist Idist *
cmov2 (1000, 50);
charstr (str6);

175

APPENDIX D: THREE-DIMENSIONAL GRAPH SEARCH EVALUATION TOOL
SOURCE CODE

Title: search3d.h
Author: Mark Compton
Course: Thesis
Date: 12 Mar 92

Description: This program builds a three dimensional search area designed to
test graph type searches for theses work. The tool is called
3-D GRAPH SEARCH EVALUATION TOOL.

Support: search3d.c (contains main menu for building tool)
search support3d.c (contains support routines for building tool)

*************************** ******** ***************************

/*Preprocessing Directives**/
#define BOXWIDTH 30.0 /* box width
#define BOXHEIGHT 30.0 /* box height */
#define BOXDEPTH 30.0 /* box depth */
#define MAXX 25 /* number of nodes in x direction */
#define MAXY 25 /* number of nodes in y direction */
#define MAXZ 9 /* number of nodes in z direction 9*/
#define SUBX 5 /* number of subareas in x direction */
#define SUBY 5 /* number of subareas in y direction */
#define SUBZ 3 /* number of zones in z direction 3*/
#define SUBXNODES 5 /* number of nodes in each subarea in x direction */
#define SUBYNODES 5 /* number of nodes in each subarea in y direction */
#define SUBZNODES 3 /* number of nodes in each zone in z direction 3*/
#define MAXSTRING 20 /* for file names */

#define ODD 1 /* defines if a value is odd */
#define EVEN 0 /* defines if a value is even */

#define SLOW 1000000 /* defines playback speeds */
#define MEDIUM 150000
#define FAST 15000

/* defines states of a node */
#define FREE 0 /* nothing at node */
#define OBSTACLE 1 /* obstacle at node */
#define AUV 2 /* vehicle (Autonomous Underwater Vehicle) */
#define ADJACENT 3 /* node adjacent to vehicle */
#define ACTIVE 4 /* detected, non-object, not visited */
#define VISITED 5 /* noae has been previously visited *1
#define ASPATH 6 /* local path selected by A-Star Search */

/* define colors of objects in starch world */
#define FREECOLOR RGBcolor(155,155,200);
#define OBSTACLECOLOR RGBcolor(0,0,0);
#define AUVCOLOR RGBcolor(0,0,255);
#defire ADJACENTCOLOR RGBcolor(l10,45,0);
#define ACTIVECOLOR RGBcolor(25b,255,0);
#define VISITEDCOLOR RGBcolor(255,255,255);
#define DIRECTIONCOLOR RGBcolor(255,255,0);
#define ASCOLOR RGBcolor(255,0,0);

#define STOREOBSTACLES 10 /* menu pick for storing obstacle data */
#define RETRIEVEOBSTACLES 20 /* menu pick for retrieving obstacle data */
#define RETRIEVEMISSION 30 /* menu pick for vehicle track */

176

#define PLAYBACKMISSION 40 /* menu pick for mission playback */
#define PAUSEMISSION 42 /* menu pick to pause mission playback */
#define RESUMEMISSION 44 /* menu pick to resume mission playback */
#define CLEARAREA 50 /* menu pick to exit program */
#define PLAYBACKSPEEDSLOW 60 /* menu pick for playback speeds */
#define PLAYBACKSPEEDMEDIUM 61 /* menu pick for playback speeds */
#define PLAYBACKSPEEDFAST 62 /* menu pick for playback speeds */
#define EXIT 70 /* menu pick to exit program */

/* defines direction of vehicle */
#define NODIR 0
#define N 1
#define NE 2
#define E 3
#define SE 4
#define S 5
#define SW 6
#define W 7
#define NW 8
#define UNODIR 9
#define UN 10
#define UNE 11
#define UE 12
#define USE 13
#define US 14
#define USW 15
#define UW 16
#define UNW 17
#define DNODIR 18
#define DN 19
#define DNE 20
#define DE 21
#define DSE 22
#define DS 23
#define DSW 24
#define DW 25
#define DNW 26

char outnodo[MAXSTRING]; ** output file for nodes */
FILE *obstacleofp; /* pointer for sending obstacles to file */
FILE *obstacleifp; /* pointer for receiving obstacles from file */
FILE *missionifp; /* pointer for receiving mission from file */
char inobstacle[MAXSTRING]; /* input file name for obstacles */
char inmission[MAXSTRING]; ** input file name for mission */
int mouse select - FALSE; /* toggle for mouse selections */
int left mouse-select = FALSE; /* toggle for mouse selections */
int playthemission = FALSE; /* flag for playback of mission */
int current level; /* indicates current level for display */
int fullinitialize = TRUE; /* reinitializes full world map */
int playbackspeed - MEDIUM; /* initializes playback speed *

/*tructur** ** ** * *** ** *** * ** *** ** * * ** * ** *** * *** * ******** * ** * ** ** *** * *** **

struct location /* basic structure for location of an entity */f
int xposypos,zpos; /* grid coordinates */

typedef struct location Location;

struct node /* basic structure of a search area node */

Location grid; /* grid coordinates of node */
int zone; /* zone node is located in */
double x,y,z; /* world position of node */
int dir; /* direction node is looking */
int state; /* status of node */
int area; /* area of node in a level */

177

int visited; /* node previously visited by vehicle flag */

typedef struct node Node;

Node Wpt[MAXX][MAXY][MAXZ]; /* 3-D array for storing search area nodes */

struct missiondata

char info; /* type of information for display */
Location grid; /* grid coordinates of node */
int dir; /* direction vehicle is looking */
int state; /* status of node */
struct missiondata *nextmissiondata; /* points to next mission data */

1;
typedef struct missiondata Missiondata;
typedef Missiondata *MISSIONLINK; /* pointer to Missiondata */
MISSIONLINK head; /* points to head of list */
MISSIONLINK current; /* points to item in mission list */
MISSIONLINK prey; /* points to previous in mission list */

Title: search3d.c
Author: Mark Compton
Course: Thesis
Date: 12 Mar 92

Description: This program builds a two dimensional search area designed to
test graph type searches for theses work.

#include <stdio.h>
*include <stdlib.h>
#include <math.h>
#include "gl.h"
#include "device.h"
#include "search3d.h"
#include "search support3d.c"

main ()

char response = In';
char answer = In';
char acknowledgement - 'n';
int mainmenu;
short value; /* the value from the Event Queue */
float wx,wy; /* world coord location of the mouse
float wz; /* world coord location of node level */
long i,j; /* counters for send to file */
int hititem; /* variable holding hit name

/* Setup for retrieving mission data */
printf("\n\nMission data may be retrieved from a file ");
printf("\nthen displayed by selecting Retrieve Mission in");
printf('\nthe menu.\n\n ");
printf("Will you be retrieving mission data from a file? ");
scanf("%c",&response);
if (response -- ly° It response -' Y')

printf("\n\nPlease enter the mission input file name: \n");
scanf("%s",inmission);

/* Setup for retrieving obstacle data */
scanf("%c",&answer); /* hack to clear carrage return from buffer */
printf("\nObstacle data may be retrieved from a file ");
printf("\nthen displayed by selecting Retrieve Obstacle in");
printf("\nthe menu.\nkn ");

178

printf("Will you be retrieving obstacle data from a file? ");
scanf ("%c", &answer);
if (answer -- 'y' I answer -= 'Y')

printf("\n\nPlease enter the obstacle input file name: \n");
scanf("%s",inobstacle);

/* initialize the graphics system */
initialize 0;
/* make the popup menus
mainmenu - makethemenuso;
/* set the world coordinate system */
ortho2(0.0, (float)XMAXSCREEN,0.0, (float)YMAXSCREEN);
/* stay inside this display loop until the

Window Manager terminates us...*/
/* first time thru for drawing area */
fullinitialize - TRUE;
drawthearea (;
while (TRUE)

/* is there anything on the Event Queue? */
while(qtest() !- 0)

switch (qread (&value))

case REDRAW:
reshapeviewport 0;
break;

case LEFTMOUSE:
/* if the button has been depressed */
if(value == 1)

/* compute the world coordinate of the mouse */
wx - getvaluator(MOUSEX);
wy = getvaluator(MOUSEY);
wz = currentlevel;
/* left mouse select = TRUE; */
if (wx Z 1000:0)

checknode info(wx,wy,wz);

else

select level(wx,wy,wz);

break;
case MIDDLEMOUSE:

/* if the button has been depressed */
if(value -= 1)

/* compute the world coordinate of the mouse */
wx - getvaluator(MOUSEX);
wy = getvaluator(MOUSEY);
wz - current level;
/* mouse select - TRUE; */
if (wx < 1000.0)

putobstacle (wx,wy,wz);

else

select level(wx,wy,wz);

break;
case MENUBUTTON:

179

if(value -- 1)

hititem - dopup(mainmenu);

processmenuhit(hititem);

break;

default:
break;

/* end switch */
/* endif there was something on the queue */

if (playthemission - TRUE)I
playbackmission();

/* end while loop */

*********** **** ** ******** ****** ****** **************** *******************

Title: searchsupport3d.c
Author: Mark Compton
Course: Thesis
Date: 12 Mar 92

Description: This program contains routines which support the building of
a two dimensional graph search evaluation tool.

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

I********************** ********~***********************

/*INITIALIZE..Establish IRIS graphics preferences
/***
initialize()

/4 set up a preferred size for the window 4/
prefsize(XMAXSCREEN+1,YMAXSCREEN+l);
/* set up a preferred position for the window */
prefposition(0,XMAXSCREEN, 0,YMAXSCREEN);
/* open a window for the program *1
winopen("pick");
/* put a title on the window */
wintitle("Pick -- Middle Mouse is the Pick ");
/* set color type *1
RGBmode();
/* put the IRIS into double buffer mode */
/* doublebuffero; 4/
singlebuffer();
/* configure the IRIS (means use the above command settings) *1
gconfig();
/* queue the redraw device 4/
qdevice(REDRAW);
/* queue the menubutton 4/
qdevice(MENUBUTTON);
/* queue the left mouse button */
qdevice(LEFTMOUSE);
/* queue the middle mouse button ,
qdevice(MIDDLEMOUSE);
/* initialize the current level 4/
current level - 0;
/* select flat shading */

180

/* only works on the 4D*/
/* #ifdef FLAT

shademodel(FLAT);
#endif FLAT */

******************** ** ****************************

/*MAKETHEMENUS..Performs all the menu construction call
/************ *************************************
int makethemenus()

int topmenu; /* top level menu's name */

/* r jd the top level menu */
top er.u - defpup("Search Menu %t I Store Obstacles %xlO \

Retrieve Obstacles %x20 \
I Retrieve Mission Data %x30 \
I Playback Mission %x40 \
Pause Mission Playback %x42 \

I Resume Mission Playback %x44 \
I Clear Area %x50 \
I Playback Slow %x60 \
I Playback Medium %x6l \
I Playback Fast %x62 \
I Exit %x70 ");

/* return the name of this menu */
return(topmenu);

/************** ************************************
/*PROCESSMENUHIT..Performs all the menu actions */
/***/*
processmenuhit(hititem)

int hititem: /* item hit on the popup menus */

switch(hit item)

case STOREOBSTACLES:
storedata(;
break;

case RETRIEVEOBSTACLES:
retrieveobstacledata();
break;

case RETRIEVEMISSION:
retrievemission(;
break;

case PLAYBACKMISSION:
playthemission - TRUE;
current - head;
prey - head;
/* play-ackmission(; */
break;

case PAUSEMISSION:
playthemission - FALSE;
break;

case RESUMEMISSION:
playthemission - TRUE;
break;

case CLEARAREA:

181

fullinitialize - TRUE;
drawthearea 0;
playthemission - FALSE;
break;

case PLAYBACKSPEEDSLOW:
playbackspeed - SLOW;
break;

case PLAYBACKSPEEDMEDIUM:
piaybackspeed - MEDIUM;
break;

case PLAYBACKSPEEDFAST:
playbackspeed = FAST;
break;

case EXIT:
exit (0);
break;

default:
break;

1/* end switch *

/*DRAWTHEAREA..Draws the graph search environment *

drawtheareao(

float startx,starty; /* starting x and y of the grid *
float x,y,c,d; /* temp coord loc */
long i,j,a,b; 1* temp loop counters *

/* draw the background color ~
RGBcolor (0, 255, 255);
clear 0;
/* put up some help text *
RGBcolor (255,0,0);
cmov2i (10, 1000);
charstr("3-D GRAPH SEARCH EVALUATION TOOL");
RGBcolor (255,0,0);
cmov2i (10, 998);
charstr C" ____________

RGBcolor (0,0, 06);-
cmov2i (10, 985);
charstr(" by Mark Compton");
RGBcolor (0,0,255);
cmov2i (1000, 1000);
charstr("Mouse Functions");
cmov2i (1000, 998);
charstr(" __ 1
cmov2i (1-00, 985)
charstr("Left: Node Information");
cmov2i (1000, 970);
charstr("Middle: Build Obstacle");
cmov2i (1000, 955);
charstr("Right: Menu");
cmov2i (1000,935);
charstr("Mouse Select Data");
cmov2i (1000, 933);
charstr('______
cmov2 (100-0920);-
charstr("x - y Z-
cmov2 (1000,905);
charstr("state = I
cmov2 (1000,890);
charstr('area - 1
cmov2(1000,850); /* menu for selecting and indicating level ~

182

charstr(I'Select Level");
cmov2 (1000,848);
charstr(' ___ __

cmov2 (1000,820);
RGBcolor (0,0,0);
charstr(11011);
rectf (1020,800,1060,840);
cmov2 (1000,770);
RGBcolor (255, 0,0);
charstr(" 1"');
rectf (1020, 750,1060,790);
cmov2 (1000,720);
RGBcolor (0,255,0);
charst r (112) ;
rectf (1020,700,1060,740);
RGBcolor (0,0,0);
cmov2 (1000,691);
charstr(I"------------ 1)
cmov2 (1000,670);
RGBcolor (0,0,255);
charstr ('31) ;
rectf (1020, 650, 1060, 690);
cmov2 (1000,620);
RGBcolor (255,255,255);
charstr(1141);
rectf (1020,600,1060,640);
cmov2 (1000,570);
RGBcolor (255,0,255);
charstr(1151);
rectf (1020, 550, 1060, 590);
F4GBcolor (0,0,0);
cmov2 (1000,541);
charstr('------------- 1)
cmov2 (1000,520);
RGBcolor (0,124,124);
charstr ("6);
rectf (1020,500,1060,540);
cmov2 (1000,470);
RGBcolor (255,124,124);
charst r (-'7") ;
rectf (1020, 450, 1060, 490);
cmov2 (1000,420);
RGBcolor (255, 75, 0);
charstr (18') ;
rectf (1020, 400, 1060, 440);
pointtolevelO); /* circle marks the current level shown *
/* compute the start of the grid */
startx - ((XMAXSCREEN - MAXX * BOXWIDTH)/2.0)-145.0;
starty - ((YMAXSCREEN - MAXY * BOXHEIGHT)/2.0)-20.0;
/* draw background subareas *.I

for(a-0; a < MAXY/StJBYNODES; ++a)

for(b-0; b < MAXX/SUBXNODES; ++b)

/* compute the coior ~
if (odd(a) -- 0)

if (odd(b) -- 0)

RGBcolor (0,255,0);

if (odd(b) - 1)

RGBcolor (255,0,255);

if (odd(a) -1

183

if (odd(b) -- 0)

RGBcolor (255,0,255);

if (odd(b) -- 1)

RGBcolor (0, 255,0);

/* compute the lowerleft of the box to fill *
c - (startx + a*BOXWIDTH*SUBXNODES);
d - (starty + b*BOXHEIGHT*SUBYNODES);
/* draw the filled rectangles *
rectf (c, d, c+BOXWIDTH*SUBXNODES

d+BOXHEIGHT*SUBYNODES);

colorlevelboarder o;
linewi dth (10) ;
rect (startx-2.5, starty-2.5,

startx+5. 0+ (BOXWIDTHi*MAXX) ,starty+5.0+ (BOXHEIGHT*MAXY));
if (fullinitialize -- TRUE) /* if first time thru or clear area selected *

initialize the areao; /* resets addresses of grids *
/* draw all The nodes *
for(j-0; j < MAXY; j=j+l)

for (i-0; i < MAXX; i=i+1)

/* compute the lowerleft of the box to fill *
x - (startx + i*BOXWIDTH) + 4.0;
y - (starty + j*BOXHEIGHT) + 4.0;
/* determine color of node */
if (Wpt(i](j] (current-level].state =-OBSTACLE)

OBSTACLECOLOR;
if (Wpti]i(j]Ecurrent-level].state -=FREE)

FREECOLOR;
if(Wpt(i](j] [current level].state -- AtN)

AUVCOLOR;
if (Wpt (ii (j] (current-level] .state ==ADJACENT)

ADJACENTCOLOR;
if iWpt(i] i] [current-level] .state ==ACTIVE)

ACTIVECOLOR;
if(Wpt~i] [j](current-level] .state ==VISITED)

VISITEDCOLOR;
if(Wpt~i)] Jcurrent-level] .state ==ASPATH)

ASCOLOR;
/* draw the filled rectangles ~
rectf (x, y, x+BOXWIDTH-4 .0, y+BOXHEIGHT-4 .0);

fullinitialize - FALSE; /* allows world memory to remain intact ~

/*ODD..Determines if a value is odd or even *

odd (value)

mnt value;

if (value % 2 -- 0)
return EVEN;

else
return ODD;

184

/*EVEN .Determines if a value is even or odd

int even (value)

int value;

if (value % 2 -- 0)
return ODD;

else
return EVEN;

/*INSIDE. .deterrnines if (x,y) is inside the box defined by the
/*coordi~nates (xmin,ymin) -(xmax,ymax) *
/*NOT CURRENTLY USED. .DELETE BEFORE FINAL PRODUCT *

mnt inside(x,y,xminymin,xmax,ynax)

float x,y; /* location of the cursor

float xrnin,ymin,xmax,ymax; /* bounding box to check if cursor is inside ~

if((xrnin <- x) && (x <- xmax) && (yrnin <- y) && (y <- yrnax))

return (TRUE);

else

return (FALSE);

/*STOREDATA..Stores node data to file if requested *

storedatao(

mnt i~j,k;

obstacleofp = fopen('obstacle-file","w");
for(k-0; k < MAXZ; k-k+l)

for(i-0; i < MAXY; i-i+l)

for(j-0; j < MAXX; j-j+l)

if(Wptti]j]j(k].state -= OBSTACLE)

fprintf~obstacleofp,"%d %d %d \n',ij~k);

fclose(obstacleofp);

1 85

/*RETRIEVEOBSTACLEDATA..Retrieves obstacle data from file if requested *

ret rieveobstacledatao(

i-t x~y,z;

obstacleifp - fopen(inobstacle,"r");
while(fscanf(obstacleifp, "%d%d%d', &x,&y,&z) !- EOF)

Wpt[x]iy](z].state -OBSTACLE;

if (current-level -- z)

draw-node(Wpt[x][y] (z].grid.xpos,Wpt~x] [y] [z] .grid.ypos,Wpt~x] ly] Ez].grid.zpos);

fclose (obstacle ifp);
drawthearea 0;

/*RETRIEVEMISSION. .Retrieves mission data from file if requested
/*Stores mission data in linked list for future use *

retrievemissiono(

mnt x,y,z,nodedir~nodestate;
char w; 1* w indicates type of line to follow *
MISSIONLINK currentptr,previousptr;

/* draw the print information background *

RGBcolor (0,0.0);
rectf (270, 420, 730,580);
RGBcolor (255, 0,0);
rectf (300, 450, 700, 550),
RGBcolor (0, 0,0) ;
cmov2i (400, 500);
charstr("STANDBY ---- LOADING MISSION");
missionifp - fopen(inmission,'r");
fscanf(missionifp, "%c%d%d%d%d%d",&w,&x,&y,&z,&nodedir,&nodestate);
head =malloc (sizeof (Missiondata));
head ->info - W;
head ->grid.xpos - x
head ->grid.ypos - y;
head ->grid.zpos - z

head ->dir - nodedir;
head ->state = nodestate;
previousptr - head;

while (fscan± (missionifp, "%c%d%d%d%d%d", &w,&x,&y,&z,&nodedir,&nodestate)
EOF)

currentptr =malloc(sizeof(Missiondata));

currentptr ->info = W;
currentptr ->grid.xpos - x
currentptr ->grid.ypos - y;
currentptr ->grid. zpos - z;
currentptr ->dir = nodedir;
currentptr ->state = nodestate;
previousptr ->nextmis' iondata = currentptr;
previousptr =currentptr;

fclose (missionifp);

186

drawtheareao; /* get rid of message ~

/*KILL TIME. .Kills processor time for visual purposes in drawing *

kill time()

int a,b,c;

for (a-0;a<playbackspeed; ++a)
b - 10000000;
c - a*b;

I*PLAYBACKMISSION. .Playback of mission data *

playbackmissiono(

if (current ==NULL)
playthemission -FALSE;

else

if (curren~t !-NULL)

if~current->info ='%)/* world information to follow *

1* assign input state to node ~
Wpt~current->gridI.xpos] [current->grid.ypos] (current->grid.zpos] .state-

current ->state;
if(current->grid.zpos - current-level)

draw Inode (Wpt (current->grid.xpos] [current->grid.ypos] [current-
>grid.zpos] .grid.xpos,

Wpt~current->grid.xpos] [current->grid.ypos] [current-
>grid.zpos] .grid.ypos,

Wpt~current->grid.xposl [current->grid.ypos) [current-
>grid.zpos] .grid.zpos);

if(current->info $)/* search path information to follow *

1* assign input state to n,-de *
Wpt[current->grid.xpos] [cur:ent->grid.ypos] [current->grid.zpos] .state

current->state;
if (current->state =- 2 11I currei,t->state -- 5 11I current->state ==6 11

(current->state - 4 && current->grid.zpos -= current-level))

draw node (Wpt [current->grid.xposj [current->grid.ypos] [current-
>grid.zpos] .grid.xpos,

Wpt~current->grid.xpos] [current->grid.ypos] [current-
>grid.zposl .grid.ypos,

Wpt[current->grid.xpos] [current->grid.yposJ [curren:t-
>grid.zpos] .grid.zpos);

kill timeo; /* used for better visual presentation *

prey - current;
current - current->nextmissiondata;
/* free(prev); use only if desire to delete list *

187

I

***** ********* ****** ******** ****************************

/*SUBAREA..Determines which subarea a node is in on each level/***
int subarea (a,b,c)

int a,b,c; /* feed in the grid coordinates */

int i,j,k,row,column,level.subarea;

for (k - 1; k <- SUBZ; ++k) /* step thru subarea levels */
f
for (i - 1; i <- SUBY; ++i) /* step thru subarea rows /{

for (j - 1; j <- SUBX; ++j) /* step thru subarea columns */

if (c >- (k-1)*SUBZNODES && c < k*SUBZNODES)

level - k; /* subarea level */

if (b >- (i-I)*SUBYNODES && b < i*SUBYNODES)

row - /* subarea row */

if (a >- (j-l)*SUBXNODES && a < j*SUBXNODES)

column - j; /* subarea column */

if (odd(level)) /* increase from right to left in odd rows

if (odd(row))

subarea - (((row-l)*(SUBZ*SUBX))+column)+((level-1)*SUBX);

if (even(row))

subarea - (((row*SUBZ*SUBX)+I)-column)-((level-1)*SUBX);

if (even(level)) /* decrease from right to left in odd rows */

if (odd(row))

subarea - (((row*SUBZ*SUBX)+I)-column)-((level-i)*SUBX);

if (even(row))

subarea - ((((row-l)*SUBZ*SUBX))+column)+((level-i)*SUBX);

return subarea;

/************************ ****** ************ **** *********************
/*DRAW NODE..Draws a square at the node/* * * ***** *** * ** *** ** * *** ** ** * *** ** ** ** * ** ***** * ** * *** ** * ***** ** ** **** ** *
drawnode(nodexnodey,nodez)

188

int nodex, nodey, nodez;

float startx,starty; /* starting x and y of the grid *

float x,y ; * temp coord loc

if(nodez !- current-level)

current level - nodez;
drawthearea 0;

/* compute the start of the grid *
startx - ((XMAXSCREEN - MAXX * BOXWIDTH)/2.0)-l45.0;
starty - ((YMAXSCREEN - NAXY * BOXHEIGHT)/2.0)-20.0;
/* compute the lowerleft of the box to fill *
x - (startx + nodex*BOXWIDTH) + 4.0;
y - (3tarty + nodey*BOXHEIGHT) + 4.0;
/* determine the color of the node *
determine color (nodex, nodey, nodez);
/* draw the filled rectangle */
rectf (x,y, x+BOXWIDTH-4 .Q,y+BOXHEIGHT-4 .0);

/*DETERMINE COLOR. .Determines the color of a node *

determine-color (nodex,noaey,nodez)

mnt nodex, nodey, nodez;

if (Wpt~nodex] [nodey] [nodez] .state -=FREE)

FREECOLOR
if (Wpt(nodex] (nodey] [nodezi .state -- OBSTACLE)
OBSTACLECOLOR

if (Wpt~nodex] (nodey] tnodez] .state -- AOV)
AUVCOLOR

if (Wpt(nodex] (nodey] [nodez] .state -=ADJACENT)

ADJACENTCOLOR
if (Wpt(nodex] (nodey] (nodez] .state -- ACTIVE)
ACTIVECOLOR

if (Wpt[nodex] (nodey] (nodezi .state =-VISITED)

VI SITE DCOLOR
if (Wpt(nodex] (nodey] (nodez] .state -- ASPATH)
ASCOLOR

/*MOUSEXTOBOXPOSITION. .Determines what node mouse is pointing to

mou sex-to boxposit ion (wx)

float wx; /* mouse position *

mnt mousex: /* mouse position converted to grid posit-*on *
float startx; /* lower left hand corner of area */

startx - ((XMAXSCREEN - MAXX * BOXWIDTH)/2.0)-145.0;
MOUsex - (wx - startx)/BOXWIDTH;
return mousex;

189

/*MOUSEY TO BOX POSITION..Determines what node mouse is pointing to/** **** ** ******** ** ****** **** **** ** ************ ************************** **
mouseytoboxposition (wy)

float wy; /* mouse position */

int mousey; /* mouse position converted to grid position */
float starty; /* lower left hand corner of area */

starty - ((YMAXSCREEN - MAXY * BOXHEIGHT)/2.0)-20.0;
mousey - (wy - starty)/BOXWIDTH;
return mousey;

*********** **** ** **** ** **** **** ** ***************************

/*PUT OBSTACLE..Draws an obstacle at indicated position and updates
/*the array *1
/***

put bstacle (wx, wy, wz)

fl-at wx,wy,wz; /* mouse position */

int i,j,k;

i - mousexto-boxposition(wx);
j - mouseyto-box_position(wy);
k - wz;
/* use grid position of mouse to update node contents */
update node info(i,j,k);
/* set the Zolor of the node to be drawn */
if(Wpt[i] [j] [k].state !- OBSTACLE)

Wpti)[j)[k].state - OBSTACLE;

else

Wpt[i][j][k).state - FREE;

/* draw the specified node */
draw-node (i, j,k);

/**
/CHECK NODE INFO..Determins mouse hit and calls for info display at node*/

check-nodeinfo (wx, wy)

float wx,wy; /* mouse position */

int i,j,k;

i - mousex to box_position(wx);
j - mouseyto box position(wy);
k - current level;
/* use grid position of mouse to update node contents */
update nodeinfo(i, j,k);

190

/*UPDATE NODE INFO.. Updates the display information for a node

update node-info (x, y, z)

mnt x,y,z; /* position of node of interest *

char strl[20],
str2 [20],
3tr3(20]; /* screen data *

static mnt mousex,mousey,mousez,
mousestate,
mousearea; /* mouse info to screen *

/* pull in information for indicated grid position *
mousex - Wpt[xJ~yjz].grid.xpos;
mousey - Wpt~xjylz.grid.ypos;
mousez - Wpt(xJ[y)[z].grid.zpos;
mousestate -Wpt~xl[ylz].state;

mousearea =Wpt[xylfz.area;

/* draw the print information background *
RGBcolor (0, 255, 255);
rectf (998, 0,XMAXSCREEN,YMAXSCREEN);
1* print information to screen *
/* put up some help text *
RGBcolor (255, 0,0);
cmov2i (10,1000);
charstr("3-D GRAPH SEARCH EVALUATION TOOL");
RGBcolor (255,0,0);
cmov2i (10,998);
charsir (" ____________

RGBcolor (0,0, 0);
cmov2i (10, 985);
charstr(" by Mark Compton");
RGBcolor (0,0,255);
cmov2i (1000,1000);
charstr("Mouse Functions");
cmov2i (1000,998);
charstr("___ ____

cmov2i (100-0, 985);
charstr("Left: Node Information");
cmov2i (1000,970);
charstr("Middle: Build Obstacle");
cmov2i (1000, 955);
charstr("Right: Menu");
cmov2i (1000, 935);
charstr("'Mouse Select Data");
cmov2i (1000,933);
charstr("______
,sprintf(sTrl1, "x3 - %dj7 - %d z - %d",mousex,mousey,mousez);
cmov2 (1000,920);
charstr(strl);
sprintf(str2, "state -%d",mousestate);

cmov2 (1000,905);
charstr(str2);
sprintf(str3, "area =%d",rnousearea);

cmov2 (1000,890);
charstr (str3);
cmov2 (1000,850);
charstr("Select Level");
cmov2 (1000,848);
charstr("__ __

cmov2 (1000,820);

191

RGBcolor (0,0,0);
charatr("0");
rectf (1020,800,1060,840);
cmov2 (1000,770);
RGBcolor (255,0,0);
charst r(" 1") ,
rectf(1020,750,1060,790);
cmov2 (1000,720);
RGBcoior (0, 255, 0);
charstr('2");
rectf (1020, 700, 1060, 740);
RGBcolor (0, 0,0) ;
cmov2 (1000,691);
charstr(" -------------)
cmov2 (1000,670);
RGBcolor (0, 0, 255);
charst r(113 ") ;
rectf (1020, 650, 1060, 690);
cmov2 (1000,620);
RG~color (255, 255, 255);
charstr("4");
rectf (1020, 600, 1060, 640);
cmov2 (1000,570);
RGBcolor (255,0,255);
charstr(C'5 ") ;
rectf (1020, 550,1060,590);
RGBcolor (0,0,0);
cmov2 (1000,541);
charstr(--------------
cmov2 (1000,520);
RGBcolor (0,124,124);
charstr(" 61') ;
rectf (1020,500,1060,540);
cmov2 (1000,470);
RGBcolor (255,124,124);
charstrC"7 ") ;
recif (1020, 450, 1060, 490);
cmov2 (1000,420);
RGBcolor (255, 75, 0);
charstr("8");
rectf (1020, 400,1060,440);
poinitolevel();

/*COLORLEVELB0ARDER. .Updates the boarder color for each level *

colorlevelboardero(

if (current-level -- 0)
RG~color (0,0,0);

if (current_level =-1)

RGBcolor (255, 0, 0)
if (current-level -- 2)
RGBcolor (0, 255,0);

if (current-level -- 3)
RGBcolor (0,0,255);

if (current level -- 4)
RGBcolor (255,255,255);

if (current level -- 5)
RGBcolor (255, 0,255);

if (current level -- 6)
RGBcolor((0124,124);
if (current level -- 7)
RGBcoior (2595,124,124);

192

if (current-level -- 8)
RGBcolor (255,75,O);

/**
/*POINTTOLEVEL..Points to the current level
/**** ** ****** **** * ******* **** ******** ** ****** ** ************ *************

pointtolevel ()

int ystart; /* where to start drawing */

colorlevelboarder 0;
ystart - 820 - (currentlevel * 50);
circf(1090,.ystart,0);

/*************************************** *********************************/*

/*SELECTLEVEL..Selects the desired level/******** **

select level(i,j)

float i,j; /* position of mouse */

/* see if it is to select new level */
if (i >- 1020.0 && i <- 1060.0)

if (j >- 800.0 66 j <- 840.0)

current level = 0;
drawthearea);

if (j >- 750.0 66 j <- 790.0)

current level - 1;
drawthearea (;

if (j >- 700.0 && j <- 740.0)

current level - 2;
drawthearea 0;

if (j >- 650.0 66 j <= 690.0)

current level - 3;
drawthearea 0;

if (j >- 600.0 && j <- 640.0)

current level - 4;
drawthearea (;

if (j >- 550.0 66 j <- 590.0)

current level - 5;
drawthearea 0;

if (j >- 500.0 66 j <- 540.0)

current level - 6;
drawthearea 0;

if (j >- 450.0 && j <- 490.0)

193

current-level -7;

drawthearea 0;

1

current-level =8;

drawthearea 0;

/*INITIALIZE THE AREA.. Reinitializes the entire area *

initialize-the-area()

int i,j,k;

for(k-0; k< MAXZ; k-k+l)

for(j-0; j < MAXY; j=j+l)

for(i-0; i < MAXX; i-i+l)

/* fill in Node structure *
Wptti](j][k].x - i
Wpt[i] [j] (k].y = j
Wpt(i][j](k].z - k
Wpt[i][j](k].state = FREE;
Wpt[iJ[jJ[k].grid.xpos - i
Wpt[ih[jlk.grid.ypos - j
Wpt(i][j][k].grid.zpos =-k
Wpti(ii [k] .area - subarea(i, j,k);

194

APPENDIX E: AUV SIMULATOR GUIDANCE MODULE SOURCE CODE

/*************************** ***

Title: guidance.h
Author: Mark Compton
Course: Thesis
Date: 09 March 92

Description:
This program analyzes the path of a point robot as it maneuvers
from waypoint to waypoint. It then outputs this information to
a graph file where it can be printed or to a NPS AUV Integrated
Graphic Simulator file for playback.

The objectives are as follows:
Case 1: Determine path of robot based on initial configuration,

speed, turn direction, turn rate and travel time.
Case 2: Determine path of robot direct from start point to first

available waypoint, then from waypoint to waypoint.

*************************** ****** ********************************

/*Preprocessing Directives***
#define PI 3.141592653589793
#define MAXSTRING 20
#define SUCCESS 2
#define FAILURE 0
#define FATAL 1
#define FALSE 0
#define TRUE 1
#define NONFATAL 0
#define UNDEFINED -1

/*Global Declarations***/

int verbose - FALSE; /*trouble shooting boolean*/
int count - 0; /*track iterations of Dr inputs*/
int desired case - 0;
int last visited wpt - -1; /*eliminates reanalysis of visited wpts*/
int total wpts - 0;
int total vertices - 0;
char outdrxy(MAXSTRING];
char outdrxz[MAXSTRING];
char outsiml[MAXSTRING];
char outsim2[MAXSTRING];
char outwptxy(MAXSTRING];
char outwptxz[MAXSTRING];
char inwptEMAXSTRING];
int send to file - 0;
FILE *drxyofp,*drxzofp,*simlofp,*sim2ofp,

*wptxyofp,*wptxzofp,*wprifp;

/*Structur* **** **** ** **** ** **** **** ** ****** ********** ******** ********

struct point

double x,y,z,azimuth, elevation;
};
typedef struct point Point;

struct config

double x, y, z, azimuth, elevation;
1;
typedef struct config Config;

195

Config Dr(lOOOOO];
Config Wpt[lOOOOJ;

extern, double max val();
extern double min val();
extern double rad-to deo ;
extern double dog to rado;
extern double normalize 0;
extern double relazimutho;
extern double relelevo;
extern int precede 0;
extern Config compute new configuration 0;
extern void output xydr .ont0
extern void output-xz-drpointso;
extern void output_siml..yointso;
extern void output_ztime_.yointso;
extern void enter waypointso);
extern void retrieive waypoints0);
extern mnt determinenext waypoint 0;
extern void proceed alongpatho;
extern mnt introduction 0;
extern void case-l();
extern void case_2();

/*Main Porm **** ********* **** **

#include <stdio.h>
#include <stdlib.h>
#include -<math.h>
#include <string.h>
#include 'guidance.h'

main (

char answer -I ,
char response - W
char outtemp[MAXSTRING];
Config *config_, '*conf ig b, *con±.Lg_c;

config-a - (Config *)malloc (3izeof(Config));
configb - (Config *)malloc (sizeof(Config));
config-c - (Config *)malloc (sizeof(Config)l;

while (answer -- 'y 11 answer -- IV')

system('lclearl");
introduction 0;
system ("clear"');

if (desired-case -- 1)

scanf ("%c", &response);
printf("Do you desire to send output to a file (yin)?)
scanf (Ic", &response);
if (response -- 'y' 11 response -- 'Y')

printf("\n\nEnter output file name: \n');
scanf("%s",outdrxy);
strcat (outdrxy, ".xy.);
strcpy (outdrxz, outdrxy);
strcat (outdrxz, ".xz") ;
printf ("Opening %s for writing. \n",outdrxy);
printf ("Opening %s for writing. \n",outdrxz);
drxyofp - fopen(outdrxy,"w");
drxzofp - fopen(outdrxz,"w");
send-to-file - 1; /*global flag*/

196

7-"7

case_1 (conf ig a, conf igb)
if (response - Iy 11 response - YI)

fclose(drxyofp);
fClos3*(drxzofp);

response - I'
send-to-file - 0;

if (desired-case -- 2)

scanf ("%c", &responae);
printf("Do you desire to send output to a file (yin)? ;
scanf (Ic", £response);
if (response -- 'y 11 response -- *Y')

printf("\n\nEnter output file name: \n");
scanf("ts",outtemp);
strcpy (outdrxy, outtemp);
strcpy (outdrxz, outtemp);
strcpy (outaimi, outtemp);
strcpy (outsim2, outtemp);
sircat (outdrxy, '.xy");
strcat (outdrxz, .xz");
strcat (outaimi, ' siMl");
strcat (outsim2,".sim2");
drxyofp - fopen(outdrxy,"w");
drxzofp - fopen(outdrxz,'w");
simlofp - fopen(outsiml,"W");
sim2ofp - fopen(outsim2,"w");
send-to-file - 1;

case_-2 (config__a, configb);
if (response -- 'y' 11 response -- Y')

f Close(drxyof p);
f close (dzxzof p);
fClo3e(3iMlOfp);
fclose(sim2ofp);

response - I'
send-to-file - 0;

count - 0; /*reinitialize array counter*/
printf('\n\n\n\n\n");
scanf ("%c", £answer); /*clear buffer*/
printf ("Do you want to enter more data (y or n)? \n");
scanf ("%c', &answer);
system ("clear");

/*MAX VAL. The following function determines the max of two values.

extern double max val (valuel,value2)
double valuel,value2;

if (valuel > value2) return valuel;
if (valuel < value2) return value2;
if (valuel -- value2) return;

/*MINVAL. .The following function determines the min of two values.

197

extern double min val(valuelvalue2)
double valuelvalue2;

i
if (valuel < value2) return valuel;
if (valuel - value2) return value2:
if (valuel -- value2) return;

/*RAD TO DEG..The following function converts from radians to degrees. t/

extern double rad to deg(angle)

double angle;

return angle * 180.0 / PI;

/*DEG TO RAD..The following function converts from degrees to radians. a,

extern double deg to rad(angle)

double angle;

return angle * PI / 180.0;

/*NORMALIZE..The following function normalizes from -PI to PI

double normalize(angle)
double angle;

double x;

x - angle;
while (x > PI) x - x - PI - PI;
while (x < -PI) x - x + PI + PI;
return x;

/*RELAZIMUTH..determines relative azimuth between two points a/

extern double relazimuth(ptlx,ptly,pt2x,pt2y) /* range -PI .. PI */

double ptlxptlypt2x,pt2y; /* return normalized angle between points*/

if ((ptlx -- pt2x) && (ptly -- pt2y))
return 0.0;

else
return normalize (atan2 (pt2y - ptly, pt2x - ptlx));

/*RELELEV..determines relative elevation between two points in 3-D

extern double relelev(ptlxptly,ptlz,pt2x,pt2y,pt2z)
/* range -PI/2 .. PI/2 t/

double ptlx,ptly,ptlz,pt2x,pt2y,pt2z;
/* return normalized angle between points*/

if ((ptlx -- pt2x) && (ptly -- pt2y) && (ptlz -- pt2z))
return 0.0;

else
return (atan2 ((pt2z - ptlz),

(sqrt((pt2x - ptlx)*(pt2x - ptlx)+
(pt2y - ptly)*(pt2y - ptly)))));

198

/*PRECEDE. .determines angle precedence. Angles are in degrees.
/*Returns true if angle 1 preceeds angle 2

extern mnt precede (anglel, angle2)
double anglel, angle2;

if (normalize (normalize (angle2) - normalize (anglel)) > 0.0)
return TRUE;

else
return FALSE;

/*COMPUTENEWCONFIGURATION. The following function computes the new
/*position andj orientation of a robot given its starting point, speed *
/*turn direction, turn rate pitch direction, pitch rate and desired DR *
interval.

extern Config compute~new-configuration (config a, conf ig_ b, speed,
turn-direction,turn-rate,
pitch -direction,pitch rate,
delta-time)

Config *configa, *config b;
float speed,turnrate,ptch-rate,delta-time;
mnt turn-direction~pitch direction;

double delta d,psi_v;

delta d - spee' * delta time; /*distance traveled in interval*/
if (tuGrn-direction -T -)
configb->azimuth -normalize (config a->azimuth +

(turn-rate * delta-time));
if (turn-direction ==1)

configb->azimuth -normalize (config a->azimuth -
(turn-rate * delta-time));

if (turn-direction -=0)

configb->azimuth =configa->azimuth;

if (pitch_direction -=-1)

configb->elevation - normalize (configa->elevation +
(pitch-rate * delta-time));

if (pitch direction -- 1)
config_b->elevation - normalize (config a->elevation

(pitch-rate * delta-time));
if (pitch direction -- 0)

config_-E->elevation - configa->elevation;
configb->x - config_a->x + delta -d * cos(configa->azimuth);
configb->y - config a->y + delta -d * sin(configa->azimuth);
configb->z - config a->z + delta-d * sin(config-a->elevation):
if (count -- 0)

Dr[0].x -config-a->x;

Dr(0].y -config-a->y;

Dr(01.z -configa->z;

Dr[OI .azimuth - configa->azimuth;
Dr(0] .elevation - config-a->elevation;
count - count + 1;

Dr~count].x m config-b->x;
Dr (count] .y - configb->y;
Dr~count] .z - config-b->z;
Dr~count] .azimuth - configb->azimuth;
Dr~count] .elevation - configb->elevation;

199

count - count + 1;
return *config-b;

/*OUTPUTXYDRPOINTS. .Sends dr points to output Zile *

extern void outputxydrpoints(speed,turn-rate,delta-time)

float speed,turn-ratedelta-time;

int i;
float max x,

maX-y;

i! (send-to-file -- 1)

fprintf(drxyofp,"%f ",DrEO].x); /*get Start printed in right place*/
fprintf(drxyofp, "%f\n",DrfO] .y);

for (i - 0; i <- count - 1; ++i)

if (i -- 0)

fprintf(drxyofp,"\VStartTrackS=%fTr=%fDt-%f\"\n",
speedrad to deg(turn rate),delta time);

fprintf(drxyofp,"%f"',D r~i].x);
fprintf(drxyofp." %f\n",Dr[i] .y);

else

fprintf(drxyofp,"%f",Drti] .x);
fprintf(drxyofp." %f\n",Dr[i] .y);

fprintf (drxyofp, "End Track\n");
if (desired-case - 2f)

/*also need to enter waypoint.-/

fprintf (drxyofp. "%f",Wpt [0).x);
fprintf(drxyofp," %f\n",Wpt[0] .y);
fprintf (drxyofp, "First Wpt\n");
for (i - 0; i < total wpts ; ++i)

fprintf(drxyofp,"%f",Wpt[i] .x);
fprintf(drxyofp," %f\n',Wptti] .y);

fprintf (drxyofp, "Last Wpt An");

if (desired-case - 3)
/*also need to enter waypoints/obstacle*/

fprintf(drxyofp,"%f",Wpt[O] .x);
fprintf(drxyofp," %f\n",Wpt(O3 .y);
fprintf (drxyofp, "FirstWpt\n"l);
for (i = 0; i < total-wpts ; ++i)

fprintf(drxyofp,"%f",Wpt~i] .x);
fprintf(drxyofp," %f\n",Wpt[i] .y);

fprintf (drxyofp, "Last Wpt\n");

return;

/*OUTPjT IXZ DRPOINTS. .Sends dr points to output file

200

extern void output xz dr_.oints(speed,pitch-ratedelta-time)

float speed,pitch-rate,delta time;

mnt i;
float max x,

max-z;

if (send to file -- 1)

fprintf(drxzofp,'%f ",Dr(O].x); I*get start printed in right place*/
fprintf(drxzofp,'%f\n",Dr[0] .z);
for (i - 0; i <- count - 1; ++i)

if (i - 0)

fprintf(drxzofp,2VStartTrackS-%fTr-%f Dt-%f\''\n .
speed, rad to deg (pitch rate) ,delta-time);

fprintf (drxzofp, "%f"',Dr~i] .x);
fprintf(drxzofp," %f\n.,Dr[i] .z);

else

fprintf(drxzofp,"%ftDr[i] .x);
fprintf(drxzofp," %f\n",Drfi] .z);

fprintf (drxzofp, "End Track\n");
if (desired-case --=Y

/*also need to enter waypoints*/

fprintf(drxzofp,"%f' WptEO) .x);
fprintf(drxzofp," %f\n",Wpt[0J .z);
fprintf (drxzofp, "FirstWpt\n');
for (i - 0; i < total. wpts ; ++i)

fprintf(drxzofp2"%f",Wpt(i] .x);
fprintf (drxzofp," %f\n', Wpt [i] .z

fprintf (drxzofp, "LastWpt\n");

return;

/*OUTPUJT SIMl POINTS.. Sends points to simulator file '

extern void outp-ut simlspoints()

mnt i;

if (desired-case -- 2)

for (i - 0; i <- count - 1 ; ++i)

fprintf(simlofp,"%f", (float) i/1O.0);
fprintf(simlofp," %f",Dr~i] .x);
fprintf(sirnlofp," %f",Dr[i] .y);
fprintf(simlofp," %f",Dr~i] .z);
fprintf(simlofp," %f",0.0);
fprintf(simlofp," %ftDr~i].elevation*(-1.0));
fprintf(simlofp." %f",Dr[i] .azimuth);
fprintf(simlofp," %f If %f If If If If If If If\n",

0.0, 0.0,0.0,0.0,0.0, 0.0, 0.0,0.0,0.0, 0.0);

201

return;

/*OUTPUT ZTIME POINTS. .Sends z and time information to output file i

extern void output-ztime_.points()

mnt i;

if (desired-case -- 2)

for (i - 0; i <- count - 1 ; ++i)

fpit{i~f, f%~",foti1.,ri.)

return;

/*ENTER WAYPOINTS. .User enters desired waypoints. *

void enter waypoints (

Point pointi, point2, point3;
mnt i;
mnt wpt -number - 0;
float ab,c; /*floats for scanf to be cast to doubles*/

printf("\n\n\n\n\n");
printf('Enter the desired number of waypoints (ten maximum): 11);
scanf ("%d', &total-wpts);
system("lclearl");
printf("Please enter the x, y and z coordinates of you waypoints\n");
printf ("in sequential order.\n\n");
for (i - 0; i < total-wpts; ++i)

(wpt number -=~)
printf("\n\nWaypoint number %d: \n",wpt-number);
printf(" x - ");
scanf ("%f ", &a);
printf('\n y - ");
scanf (1%f ", fib);
print f(C'\n z - I)
scanf ("%f", ic);
pointl.x - (double) a;
pointl.y - (double) b;
pointl.z - (double) c;
Wpt[i].x - pointl.x,
Wpt(il.y - pointl.y;
Wpt[i].z - pointl.z;
if (i > 0 && i < total wpts)

point2.x - Wpt~i - Ix
point2.y - Wpt[i -1)y

point2.z - Wpt~i -1.z

point3.x - Wpt~i].x;
point3.y - Wpt~i].y;
point3.z - Wpt[i].z;
pointi .azimuth - relazimuth (point2 .x, point2 .y,

point3.x,point3.y);
Wptfi-1] .azimuth - pointl.azimuth;

202

Wpt~total wpts - 1].azimuth - Wpt(total wpts - 2].azimuth;
/* aets the ls apntsrazmhto that of the next to last*/
printf{'Your waypoints are as follow3:\n\n");
for Ui - 0; i < total-wpts; ++i)

printf("Waypoint %d - %,f%,f\=
(i + l),Wpt~i1.xWptE±].ywPt~i].z,
rad-to deg (Wpt (ii.azimuth));

printf ("\n\n\n\n\n");
return;

/*RETRIEVE WAYPOINTS. .Retrieves waypoint data from file

extern void retrieve waypoints()

Point point , point2, point3;
mnt i;
mnt wpt_npumber - 0;
float a,b,c; /*floats for scanf to be cast to doubles*/

wptifp - fopen(inwpt,"r");
while(fscanf(wptifp, "%f%f%f", &a.&b,&c) !-EOF)

pointl.x - (double) a;
pointl.y - (double) b;
pointl.z - (double) c;
Wpt[wpt-number].x = pointi.x;
Wpt~wpt-number].y = pointl.y;
Wpt[wpt-number].z = pointl.z;
if (wpt number > 0)

point2.x - Wpt[wpt number -1]x

point2.y - Wpt[wpt number -1.y

point2.z - Wptlwpt_number -1)z

point3.x - Wpt[wpt number] .x;
point3.y - Wpt[wpt number] .y;
point3.z - Wpt~wptnumber].z;
pointl.azimuth = relazimuth(point2.x,point2.y,

point3.x,point3.y);
Wpt [wpt number-i] .azimuth - pointl.azimuth;

wpt number - wpt_number + 1;

Wpt[wpt number -1].azimuth = Wpt[wpt number - 2].azimuth;
/*sets tEhe last waypoint's relative azimuth to that of the next to last*/
printf("Your waypoints are as follows:\n\n");
for (i - 0; i < wpt-number; ++i)

printf('Waypoint %d =-%,f%,f\"
(i + l),Wpt~iJ.x,Wpt[i].y,Wptli].z,
rad-to deg(Wpt[i] .azimuth));

printf ("\n\n\n\n\n');
fclose (wptifp);
count - wpt number;
total -wpts - wpt_number;
return;

/*DETERMINENEXTWAYPOINT. .determines next waypoint. If past *
/*last waypoiti list, next waypoint is first waypoint. *

203

extern int determine next waypoint (config__a)

Config *config-a;

Point pointi, point2;
nt, next waypoint, i;

int direction - 0; /*l-east,-l-west*/
float robot--topoint relazimuth,checking-relazimuth-one,

checking relazimuth-two;

/*increment through wpts until checked wpt is behind robot*/
/*the next waypoint is then the next desired wpt*/
for (i - last-visited-wpt + 1 ; i < total-wpts; i - last-visited_yt + 1)

pointl.x - config_a->x;
pointl.y - config_a->y;
pointl.z - config__a->z;
if (verbose -- TRUE)

printf ("Your input point is (%f,%f,%f,%f)\n",
pointl.x,pointl .y,pointl.z,
rad-to-deg(configa->azimuth));

point2.x - Wpt[i].x;
point2.y - Wpt(iI.y;
point2.z - Wpt[i].z;
if (verbose -- TRUE)

printf("Analyzed waypoint is (%f,%f,%f,%f)\n",
Wpt[i] .x,Wpt~i] .y,Wpt (ii.z,
rad-to deg(Wpt[i] .azimuth));

point2.azimuth - Wpt[i].azinuth;
robot topoint_relazimuth - relazimuth (pointl .x,pointl .y,

point2.x,point2.y);
/*check to see if robot is past waypoint*/
if (i -- 0) /*use relazimuth of wpt 0 as reference*/

if (rad_todeg(point2.azimuth) <- 90 &
rad- to-deg(point2.azimuth) >- -90) /*heading east*/

chekn~eaiuh-oe-nrnlz~on2aiuh-P/)
checking relazimuth-to - norrnalize(point2.azimuth + PI/2);

direction - 1;

else /*heading west*/

checking relazirnuth -one - normalize(point2.azimuth + P1/2);
checking relazimuth-two - normalize~point2.azimuth - PI/2);
direction - -1;

if (i !- 0) /*Use previous wpt relazimuth as reference*/

if (rad to-deg(Wpt~i-1j.azimuth) <- 90
rad-todeg(Wptli-].azimuth) >- -90) /*heading east*/

checking relazimuth -one - normalize(Wpt~i-li.azimuth - P1/2);
checking relazimuth-two - normalize(Wptli-1l.azimuth + P1/2);
direction-i1;

else /*heading west*/

checking relazimuth -one - norrrfalize(Wptfi-lJ.azimuth + P1/2);
checking relazimuth-two - normalize(Wpt[i-l1l.azimuth - P1/2);

204

direction - -1;
)

if (verbose -- TRUE)

printf("Robot to point relazimuth is %f \n",
rad-to deg (robot toypoint relazimuth));

printf("Checking relazimuth one is %f\n",
rad_todeg (checking relazimuthone));

printf("Checking relazimuth two is %f\n",
rad-to deg (checking relazimuthtwo));

if (direction -- 1) /*heading east*/

if ((robotto_point relazimuth <- checkingrelazimuth one) II
(robot topoint relazimuth >- checking relazimuth two))

/*robot-is down track from waypoint being analyzedT/

last visitedwpt w i;
if (Verbose -- TRUE)
printf("You are ahead of analyzed point\n");
if (i -- totalwpts - 1)

if (verbose -- TRUE)
printf("You are beyond last waypoint\n");

next waypoint = -1;
return next waypoint;

/*robot is past last waypoint *1
/*terminate track*/

if ((robot to pointrelazimuth > checkingrelazimuth one) &&
(robottopoint relazimuth < checkingrelazimuthtwo))

if (verbose -- TRUE)
printf("You are behind analyzed point\n");

nextwaypoint = i;
if (verbose -- TRUE)
printf("Check waypoint is %d\n",next waypoint);
return next waypoint;

if (direction -- -1) /*heading west*/

if ((robot to_point relazimuth <- checkingrelazimuth two) &&
(robot topointrelazimuth >- checking relazimuth one))

/*robot is down track from waypoint being analyzed*/

last_visited wpt - i;
if (verbose -- TRUE)

printf("You are ahead of analyzed point\n");
if (i -- totalwpts - 1)

if (verbose -- TRUE)
printf("You are beyond last waypoint\n");

next waypoint - -1;
return next waypoint;

/*robot is past last waypoint */
/*terminate track*/

if ((robot topoint relazimuth > checking relazimuthtwo) I I
(robot_topointrelazimuth < checkingrelazimuthone))

if (verbose -- TRUE)
printf("You are behind analyzed point\n");

nextwaypoint - i;
if (verbose -- TRUE)
printf("Check waypoint is %d\n",next waypoint);
return nextwaypoint;

205

/*PROCEEDALONGPATH.. Determines which waypoint is next then steers to *
/*that waypoint. Repeats until all remaining waypoints have been reached.*/

extern void proceed-alongypath (conf ig a, config b, turn rate, pitch rate,
speed,delta-time)

Config *config-a,*config-b;
float turn-rate,pitch-rate, speed, delta-time;

int next waypoint,next-wpt,i;
Point pointl,point2;
float alpha, /*relazimuth angle between robot and desired wpt*/

beta, /*pitch angle between robot and desired wpt*/
theta, /*elevation of robot (pitch)*/
psi; /*azimuth of robot*/

mnt turn-direction, /*l=right,-l-left,O-none*/
pitch-direction; /*-1-down, 1-up, O-none*I

i - determine-next-waypoint(config a);
/*determine first wpt to steer to*/

if Ui - -1) return;
next -wpt - (i + 1);
if (verbose - TRUE)
printf("The next waypoint number is: %d\n\n",next-wpt);

while (i < - 1 11 i > - 1)
/*proceed from next til last wpt*/

i = determine -next -waypoint (config a);
if (i - -1) /*flag indicating through with track*/

return;
next wpt - i+ 1);
if (verbose - TRUE)
printf("The next waypoint number is: %d\n\n",next-wpt);

pointl.x - config a->x;
pointl.y - configa->y;
pointl.z = configa->z;
point2.x - Wpt[i].x;
point2.y - Wpt[i].y;
point2.z = Wpt[i].z;
alpha =relazimuth(pointl.x,pointl.y,point2.x,point2.y);

beta -relelev(pointl.x,pointl.y,pointl.z,

point2.x,point2.y,point2.z);
psi - config-a->azimuth;
theta = config a->elevation;
if (precede(alpha,psi) -- 1)

{turn direction = 1; /*turn right*/
if (Verbose -= TRUE)

printf("Must turn right!\n");)
if (precede(psi,alpha) -- 1)

(turn direction - -1; /*turn left*/
if (Verbose -- TRUE)

printf ("Must turn left! \n');
if (normalize(psi) - normalize(alpha + PI))

(turn direction - 0;
if (verbose - TRUE)
printf("Lets turn left!\n");)

if (precede(beta,theta) -- 1)
(pitch-direction - -1; /*turn down*/
if (verbose -- TRUE)

printf ("Must turn down! \n);
if (precede(theta,beta) -- 1)

(pitch direction - 1; /*turn up*/
if (verbose - TRUE)

206

printf("Must turn up!\n"*);1
if (normalize(theta) -- normalize(beta + PI))

(pitch direction - 0;
if (verbose - TRUE)
printf ("Lets turn down!\n");)

compute-new-configu ration (con fig a, conf igb~, speed,
turn-direction,turn_rate,
(pitch direction* (-1)), pitch-rate~delta-time);

configa->x =config__b->x;

config a->y -config,b->y;

config-a->z -configb->z;

config a->azimuth - config__b->azimuth;
configa->elevation - configb->elevation;

/*INTRODUCTION. .Lead in to guidance program *

extern mnt introduction()

print f(" in-- ------- =-\inn

printf("Title: Guidance\n");
printf ("Author: Mark Compton\n");
printf ("Course: Thesis\n");
printf("Date: 09 March 92\n\n");
printf ("Description: \n\n");
printf ("This program analyzes the path of a point robot as it maneuvers\n");
printf ("from waypoint to waypoint. It then outputs this information to \n");
printf ("a graph file where it can be printed.\n\n");
printf ("The objectives are as follows:\n\n");
printf ("Case 1: Determine path of robot based on initial configuration,\n");
printf(" speed, turn direction, turn rate and travel time. \n\n");
printf ("Case 2: Determine path of robot direct from start point to first\n");
printf(" available waypoint, then from waypoint to waypoint.\n\n");
printf ("===== ------ =-==== ----~-=-=========== \n");
printf ("a-= ----- = ---= --=== ----------- ===s======~a=\n\n");
printf ("Please enter the number of the case you wish to analyze:")
scanf ("%d", &desired-case);

/*CASE 1. .Function to i/o and execute case I *

extern void case_1(configa,config-b)

Config *config a, *config-b;

int i,
turn-direction, /*-1=left, 0-none, lright*/
pitch -direction; /*-l=down, 0-none, l-up*/

float time, /*total time of analysis*/
speed, /*desired robot speed*/
turn-rate, /*degrees per second*/
pitch rate, /*degrees per second*/
delta -time; /*time interval between DR positions*/

float posx,posy,posz,orient,elev,
d,e,f,g; /*floats for scanf to be cast to doubles*/

printf("\n\n\n\n");
printf ("W.
printf (" -CASE 1=\n");
printf (" =--- nnnnn)
printf("This case analyzes the robot path given a start position\n");
printf("(x,y,z), start azimuth with respect to the x-axis(+-180), \n");

207

printf("(x,y.z), start elevation with respect to the x-axis(+-180), \n");
printf("'turn rate (deg per sec),and travel time (seconds) .\n\n\n\n\n");
printf ("Enter the starting x, y and z coordinates of your robot.\n\n")
printf ("start x -I-;

S canf ("%f ", &posx) ;
printf("l\nstart y - I)

s canf ("%f", &posy);printf("'\nstart z -=)

scanf("%f", &posz);
system("lclear"');
printf("\n\n\n\nEnter the start azimuth (+-180) of your robot.\n\n");
printf ("start azimuth-

s canf ("%f",&orient);printf("\n\n\n\nEnter the start elevation (+-180) of your robot.\n\n");
printf ("start elevation

scanf (" %f ", &elev) ;
config-a->x - (double) posx;
config-a->y - (double) posy;
config-a->z - (double) posz;
configa->azimuth - deg_to_rad(orient);
configa->elevation - deg_ to rad(elev);
system ("clear') ;
printf("\n\n\n\nEnter in the speed of your robot (units per second) .\n\n");
printf("speed -)
scanf ("Wf", &speed);
system ("clear") ;
printf("\n\n\n\nEnter in the turn direction of your robot.\n");
printf("(-l - left, 1I right, 0 - no turn) .\n\n");
printf ("turn direction ")
scanf("%d",&turn direction);
system C "clear");
printf("\n\n\n\n")
printf ("Enter in the turn rate of your robot (degrees per second) .\n");
printf("Note: use turn rate of 0.0 if no turn.\n\n");
printf("turn rate-
scanf (" %f", &f);
turn -rate - degtorad(f);
3ystem("clear");
printf("\n\n\n\nEnter in the pitch direction of your robot.\n");
printf("(-l - down, 1 - up, 0 = no turn).\n\n");
printf("pitch direction =")
scanf ("%d", &pitch -direction);
system("lclear"');
printf ("Enter in the pitch rate of your robot (degrees per second).\n");
printf("Note: use pitch rate of 0.0 if no change in pitch.\n\n");
printf ("pitch rate
scanf ("%f", ag);
pitch rate = degtorad(g);
systemR ("clear") ;
printf C("\n\n\n\n");
printf ("Enter the time of travel for your robot (seconds). \n\n");
printf ("time =-)
scanf (', &time);
system("lclear"');
printf ("\n\n\n\n"');
printf ("Enter the time interval between DR positions (seconds).\n\n");
printf ("interval - 1)
scanf ("%f", delta time);
systeM("lclear"l);
printf("\n\nYour data entries are as follows: \n\n");
printf ("Start coordinates -(f%,f\"

config_a->x, config a->y, config_a->z);
printf ("Start azimuth - %f\n",rad to deg(configa->azimuth)),
printf("Start elevation = %f\n",rad-'to-deg(configa&->elevation));
printf("Speed - %f\n",3peed);
printf("Turn direction = %d\n",turn direction);
printf ("Turn rate - %f\n",rad todeg(turn_rate));
printf("Pitch direction - %d\n",pitchdjrection);

208

printf ("Pitch rate - %f \n", rad to deg (pitch-rate))
print! ("Travel time - %f \n", time)5;
printf ("Time interval for DR - %f\n\n".delta-time);
for Ui - 1; i <- time / delta-time; ++i)

compute-new_configuration (config a, conf ig b, speed.
turn-direction,turn-rate,
(pitch-direction* (-1)) ,pitch rate,delta-time);

config_a->x - configb->x;
configa->y - config_b->y;
config._a->z - configb->z;
configa.->azimuth - config_bP->azimuth;
config_a->elevation - configb_->elevation;
I

printf ('\n\n\n\n\n\n\n\n");
output xy_ dr points (speed,turn-rate.,delta-time);
output-xz_dr-points (speed, pitch rate, delta-time);
count - 0;
printf("The robot's end configuration at time +%f is(fffff)n"

time, conf ig__b->x, conf ig b->y, config_bp->z,
rad -to deg(config-b->azimuth),
rad-to -deg(config__b->elevation));

return;

/*CASE 2. .Function to i/o and execute case 2

extern void case_2(config-a,config-b)

Config *configa, *config-b;

float speed, /*desired robot speed*/
turn-rate, /*degrees per second*/
pitch rate, /*degrees per second*/
delta -time; /*time interval between DR positions*/

float posx,posy,posz,orient,elev,
d,elf,g; /*floats for scant to be cast to doubles*/

mnt next wpt;
char ans Z = 1

reply - I'

printf ("\n\n\n\n");
printf ("----\n;
print! (" -CASE 2-\n');
print! (" -=-- nnnn")
printf("This case analyzes the robot path given a start position\n");
printf('I(x,y,z), start azimuth with respect to the x-axis(+-180), \n");
printf("(x,y,z), start elevation with respect to the x-axis(+-180), \n");
print! ("turn rate (deg per sec), and desired waypoints.\n\n\n\n\n");
print! ("The robot determines which waypoint is next at a given\n");
printf("time, proceeds directly to that waypoint and then proceeds\n");
printf("along the planned route until the final waypoint is achieved.\n");
printf ("\n\n\n\n\n");
printf ("Enter the starting x, y and z coordinates of your robot.\n\n")
printf ("start x - "
scanf ("%f", &posx) ;
printf ('\nstart y -";
scan! ("%f ", &posy);
print! ("\nstart Z -";
scanf ("%f", &posz);
system("clear");
print! ("\n\n\n\nEnter the start azimuth (+-180) of your robot.\n\n");
printf ("start azimuth
scan! ("%f", &orient);
printf("\n\n\n\nEnter the start elevation (+-180) of your robot.\n\n");

209

printf ("start elevation
acanfV'%f", &elev);
config-a->x - (double) posx;
config-a->y - (double) posy;
config--a->z - (double) posz;
configa->azimuth - deg to rad(orient);
configa->elevati on - degtorad(elev);
3ystem("lclearl");
printf("\n\n\n\nEnter in the speed of your robot (units per second).\n\n");
printf ("speed -")
scanf ("%f", Lapeed);
system("lclear"');
printf ("\n\n\n\n");
printf("Enter in the turn rate of your robot (degrees per second).\n\n");
printf("'turn rate-
scanf ("%f"1, &f);
turn rate - degtorad(f);
3syteim("clear") ;
printf("Enter in the pitch rate of your robot (degrees per second).\n\n");
printf("pitch rate-
scanf C'"%f ", &g) ;
pitch rate - deg-to-rad(g);
aystern("clear");
printf("*\n\n\n\n");
printf ("Enter the time interval between DR positions (seconds).\n\n");
printf ("interval -)
scanf ("%f", &delta -time);
system("lclear"');
printf("\n\nYour data entries are as follows: \n\n");
printf("'Start coordinates - (f%,f\"

configa->x, conf ig a->y, configa->z);
printf("'Start azimuth - %f\n",rad-to-deg(configa->azimuth));
printf ("Start elevation - %f\n",rad-to-deg(config_a->elevation));
printf ("Speed - %f\n",speed);
printf ("Turn rate -%f\n",rad -to -deg(turn_rate));
printf("Pitch rate -%f\n",radto deg(pitch rate));
printf("Time interval for DR =7%f'n\n",delta time);
printf ("\n\n\n\n\n"I);
scanf ("%c", &reply);
printf ("Will you be retrieving waypoints from a file?")
scanf ("%c", &reply);
if (reply -- 'y' 11 reply - 'Y')

printf("Enter the waypoint input file name:")
scanf ("%s", inwpt);
retrieve_ Waypoints 0;

else
enter waypoints 0;

scanf ("Wc', Gans);
printf("\n\nWhen ready to proceed with analysis enter 'y': "1);
scanf ("W'", Gans);

systeM("lclear');
proceed alongpath (config -a, config b, turn-rate,

pitch_rate, speed,delta time);
printf("\nThe robot has reached the final waypoint.\n");
output-xydr _points(speed,turn rate,delta -time);
output_xz-dr_points (speed,pitchi-rate,delta time);
output simlypoints 0;
output ztime-points C);
cr.unt Z 0;
return;

210

APPENDIX F: AUTONOMOUS SONAR CLASSIFICATION EXPERT SYSTEM
SOURCE CODE

AUV Sonar Expert System

Filename: auvsonar

; Purpose: Batch file for auvsonar.clp which resets and executes the
AUV sonar contact classification expert system.

Paper: "Autonomous Underwater Vehicle Sonar Classification using
Expert Systems and Neural Networks"

IEEE OCEANS '92 Conference, Newport, Rhode Island

Authors: Don Brutzman, Mark Compton and Dr. Yutaka Kanayama

Date: 24 November 91

Execution: unix> clips5 unix> clips5
* CLIPS> (load auvsonar.clp) CLIPS> (batch auvsonar)
; CLIPS> (reset) CLIPS> (run)

CLIPS> (run)

Clear & close files in case they were left open during previous execution

(clear) clear all facts and rules
(close rangefile) ; Close AUV-recorded pool test data input file
(close plotfile) ; Close xy coordinate file used for graph output
(close auvfile) ; Close expert system classification output file

(load auvsonar.clp) Load in AUV Sonar Classification Expert System

(undefrule oldareal)

(undefrule oldarea2)

(reset) ; Initialize agenda and assert initial facts

;;;;; (run) ; Execute AUV Sonar Classification Expert System

211

AUV Sonar Expert System

; Filenams: auvsonar.clp

Purpose: Define data templates, rules, functions and user interface
for the AUV sonar contact classification expert system.

Paper: "Autonomous Sonar Classification using Expert Systems"
IEEE Oceanic Engineering Society
IEEE OCEANS '92 Conference, Newport, Rhode Island

; Authors: Don Brutzman and Mark Compton
; Advisor: Dr. Yutaka Kanayama

; Date: 1 March 91

Comments: This expert system takes data files generated by the NPS AUV,
uses sonar returns and AUV position to generate locations of
sonar contacts, perform two-dimensional linear regression to

build line segments, combine segments into polyhedrons and

then determines the probable classification of each polyhedron.

Language: CLIPS "C" Language Integrated Production System

Execution: unix> clips5 I unix> clips5
CLIPS> (load auvsonar.clp) I CLIPS> (batch auvsonar)
CLIPS> (reset) I CLIPS> (run)
CLIPS> (run)

Execution 'dribble' files are saved in auvsonar.log

References: Sonar Data Interpretation for Autonomous Mobile Robots_,
Yutaka Kanayama, Tetsuo Noguchi, and Bruce Hartman,
unpublished paper.

History: Original program development for CS4311 Expert Systems
taught by Dr. Kanayama.

Caveat: The NPS pool coordinate system is the world reference used
where x is pool length, y is pool width, and z is pool depth.

Status: Initial development complete for object classification.
Full pool depth used for pool object outputs.
Initial offset option for centering pool data included.
Verbose output option and excess data retraction completed.
Gyro error/gyro drift rate evaluation & correction implemented.
Centroid and cross-sectional area calculations done for objects.
Top-level classification of objects using area is possible.
Mine classification implemented satisfactorily.
Excessively narrow objects are reclassified as walls.

; Data Type Deftemplates

Data template and slot names correspond to AUV Data Dictionary definitions.
Data template names have their first letter capitalized.
Variable names are all lower case.
CLIPS data types and symbols used in symbolic slots are capitalized.

212

(deftemplate Range_data

(field time ; time is positive, set by AUV
(type NUMBER)
(default 0) ; time zero is used for dummy facts
(range 0 ?VARIABLE))

(field x ; element of Point_3D AUV data type
(type NUMBER) ; dead reckoning estimate of travel
(default 0) ; relative to start position
(range 0 ?VARIABLE))

(field y ; element of Point 3D AUV data type
(type NUMBER) ; dead reckoning estimate of travel
(default 0) ; relative to start position
(range 0 ?VARIABLE))

(field z ; element of Point 3D AUV data type
(type NUMBER) ; source: pressure-sensing depth cell
(default 0) ; which may be inaccurate when shallow
(range 0 ?VARIABLE))

(field phi ; element of Attitude_3D AUV data type
(type NUMBER) in radians
(default 0)) (roll)

(field theta element of Attitude_3D AUV data type
(type NUMBER) in radians
(default 0)) (pitch)

(field psi element of Attitude 3D AUV data type
(type NUMBER) in radians. Note caveat on pg. 1
(default 0)) ; (yaw)

(field p element of Point 3D AUV data type
(type NUMBER) in radians/sec
(default 0)
(range 0 ?VARIABLE))

(field q element of Point 3D AUV data type
(type NUMBER) in radians/sec
(default 0)
(range 0 ?VARIABLE))

(field r element of Point 3D AUV data type
(type NUMBER) in radians/sec
(default 0)
(range 0 ?VARIABLE))

(field deltadiveplanes change in bow/stern planes position
(type NUMBER) in degrees
(default 0)
(range 0 ?VARIABLE))

(field deltarudders change in rudder planes position
(type NUMBER) in degrees
(default 0)
(range 0 ?VARIABLE))

(field rangea 0-4095 range units correspond to
(type NUMBER) 0..30m pool or 0..300m ocean.
(default 0)
(range 0 ?VARIABLE))

(field rangeb Up to 4 transducers can be included.
(type NUMBER)
(default 0)
(range 0 ?VARIABLE))

(field range_c
(type NUMBER)
(default 0)
(range 0 ?VARIABLE))

(field range_d
(type NUMBER)
(default 0)
(range 0 ?VARIABLE))

(field valid a ; Validity signal from sonar hardware
(type INTEGER)
(default 1))

213

(field valid b
(type INTEGER)
(default 1))

(field valid c
(type INTEGER)
(default 1))

(field valid d
(type INTEGER)
(default 1))

(field speed ; AUV speed from flow sensor
(type NUMBER)
(default 0.0))

(field processed ; set TRUE when point is asserted,
(type SYMBOL) FALSE until then.
(default FALSE)

(allowed-values TRUE FALSE))

(deftemplate Object-data

(field detection-time time is positive, set by AUV
(type NUMBER)
(default 0)
(range 0 ?VARIABLE))

(field latest-time
(type NUMBER)
(default 0)
(range 0 ?VARIABLE))

kfield valid
%type INTEGER)
(default 0))

(field x ; object center
(type NUMBER)
(default 0)
(range 0 ?VARIABLE))

(field y ; object center
(type NUMBER)
(default 0)
(range 0 ?VARIABLE))

(field z ; object center
(type NUMBER)
(default 0)
(range 0 ?VARIABLE))

(field accuracy
(type FLOAT)
(default 0.0)
(range 0.0 ?VARIABLE))

(field object
(type INTEGER)
(default 0)
(range 0 9))

(field length
(type NUMBER)
(default 0)
(range 0 ?VARIABLE))

(field height
(type NUMBER)
(default 0)
(range 0 ?VARIABLE))

(field width
(type NUMBER)
(default 0)
(range 0 ?VARIABLE))

(field confidence normalized
(type FLOAT)
(default 0.0)

214

(range 0.0 1.0))

(deftemplate Point

(field time ; time is positive, set by AUV
(type NUMBER)

(default 0)
(range 0 ?VARIABLE))

(field x ; element of Point_3D AUV data type
(type NUMBER)
(default 0)
(range 0 ?VARIABLE))

(field y element of Point 3D AUV data type
(type NUMBER)
(default 0)
(range 0 ?VARIABLE))

(field z element of Point 3D AUV data type
(type NUMBER)
(default 0)
(range 0 ?VARIABLE))

(field valid
(type INTEGER)
(default 0))

(field status
(type SYMBOL)
(default NEW)

(allowed-values NEW ACTIVE INVALID ENDPOINT USED))

(deftemplate Regression-line

(field start ; matches time of start point
(type NUMBER)
(default 0)
(range 0 ?VARIABLE))

(field end ; matches time of end point
(type NUMBER)
(default 0)
(range 0 ?VARIABLE))

(field r
(type FLOAT)
(default 0.0)
(range 0.0 ?VARIABLE))

(field orientation ; normalized degrees
(type FLOAT)
(default 0.0)
(range 0.0 ?VARIABLE))

(field correlation
(type FLOAT)
(default 0.0)
(range 0.0 ?VARIABLE))

(field status
(type SYMBOL)
(default NEW)

(allowed-values NEW CURRENT VALID USED USEDFORAREA))

(deftemplate Node

(field time
(type NUMBER)

215

(default 0)
(range 0 ?VARIABLE))

(field x
(type NUMBER)
(default 0)
(range 0 ?VARIABLE))

(field y
(type NUMBER)
(default 0)
(range 0 ?VARIABLE))

(field z
(type NUMBER)
(default 0)
(range 0 ?VARIABLE))

(field accuracy
(type FLOAT)
(default 0.0)
(range 0.0 ?VARIABLE))

(field confidence
(type FLOAT)
(default 0.0)
(range 0.0 1.0))

(deftemplate Edge

(field start ; slot values are times corresponding to data
(type FLOAT))

(field end
(type FLOAT))

(field ,veragez
(type NUMBER)
(default 0)
(range 0 ?VARIABLE))

(field status
(type SYMBOL)
(default USED)

(allowed-values USED USEDFORAREA))

(deftemplate Curve not yet implemented

(field time
(type NUMBER)
(default 0)
'range 0 ?VARIABLE))

(field node ; slot values are times corresponding to data
(type FLOAT))

(field edge
(type FLOAT))

(field shape
(type SYMBOL))

(deftemplate Polyhedron

(field start time of the initial node/edge/curve element
(type NUMBER)
(default 0)
(range 0 ?VARIABLE))

(field end time of most recent node/edge/curve element
(type NUMBER)

216

(default 0)
(range 0 ?VARIABLE))

(field startx
(type NUMBER)
(default 0)
(range 0 ?VARIABLE))

(field starty
(type NUMBER)
(default 0)
(range 0 ?VARIABLE))

(field startz
(type NUMBER)
(default 0)
(range 0 ?VARIABLE))

(field centroidx
(type NUMBER)
(default 0)
(range 0 ?VARIABLE))

(field centroidy
(type NUMBER)
(default 0)
(range 0 ?VARIABLE))

(field centroidz
(type NUMBER)
(default 0)
(range 0 ?VARIABLE))

(field sidecount
(type INTEGER)
(default 1)
(range 1 ?VARIABLE))

(field sidecounterl
(type INTEGER)
(default -1)
(range -1 ?VARIABLE))

(field sidecounter2
(type INTEGER)
(default -1)
(range -1 ?VARIABLE))

(field area
(type FLOAT)
(default 0.0)
(range 0.0 ?VARIABLE))

(field height
(type FLOAT)
(default 0.0)
(range 0.0 ?VARIABLE))

(field accuracy
(type FLOAT)
(default 0.0)
(range 0.0 ?VARIABLE))

(field confidence
(type FLOAT)
(default 0.0)
(range 0.0 1.0))

(field trait
(type SYMBOL))

(field status
(type SYMBOL)
(default ACTIVE)

(allowed-values ACTIVE COMPLETE USEDFORAREA))
(field classification

(type SYMBOL)
(default WALL)

(allowed-values NEW CURRENT WALL OBJECT MINE SWIMMER UNKNOWN
SEA-MOUNT SUBMARINE SHIP I E SKIMMERPUKE
BIOLOGICS LOTSOF BIOLOGICS))

217

; Initialization of Flag Facts

(deffacts initial-flags

(start-new-window-flag) ; commence parametric regression process

(retract-excess-data TRUE) ; any other value saves excess data

(location pool) ; NPS swimming pool test environment

(location ocean) ; alternative environment

Global Constants

(defglobal ?*minimum-points in edge* - 5) ; hard coded into regression defrules

(defglobal ?*transducer a* - 1); forward transducer corresponds to slot range a
(defglobal ?*transducer-b* - 2); left transducer corresponds to slot range-b
(defglobal ?*transducer-c* - 3); right transducer corresponds to slot range c
(defglobal ?*transducer-d* - 4); depth transducer corresponds to slot range d

(defglobal ?*feet personar unit* - 0.02398) ; 0-4095 range units correspond to
0..30m pool or 0..300m ocean.

(defglobal ?*correlation confidence weight* - 1)
(defglobal ?*validity_confidence_weight* = 1)

(defglobal ?*cl* = 3.00) ; max # standard deviations a point can be out
(defglobal ?*c2* - 2.00) ; max offset distance (feet) allowed from line
(defglobal ?*c3* - 0.066) ; min regression ellipse thinness requirement

; define default line/wall color strings
(defglobal ?*colorl* - "Color 0 255 78 1.0 0 255 78"); detected edge
(defglobal ?*color2* - "Color 200 255 150 0.7 200 255 150"); inferred edge
(defglobal ?*color3* - "Color 0 78 255 0.5 0 78 255"); hidden edge

(defglobal ?*minwalllength* = 1.0) ; min allowable individual edge length
; to be output as a WALL

(defglobal ?*maxedgedistance* - 7.0) ; max allowable distance between edges
; for edge-joining/polyhedron building

(defglobal ?*max edge angle* - 10.0) ; max allowable angle between edges
; for edge-joining/WALL building

(defglobal ?*wallthinness ratio* - 0.1) ; used to reclassify long skinny object
as WALL

Global Variables

(defglobal ?*n* - 0.0) ; m 00
(defglobal ?*sumx* - 0.0) ; m 10
(defglobal ?*sumy* - 0.0) ; m 01
(defglobal ?*sumxy* m 0.0) ; m 11
(defglobal ?*sumxx* - 0.0) ; m 20
(defglobal ?*sumyy* - 0.0) ; m 02

218

(defglobal ?*meanx* - 0.0) ; mu x
(defglobal ?*meany* - 0.0) ; mu y

(defglobal ?*sigmaxx* - 0.0) ; M 20
(defglobal ?*sigmaxy* - 0.0) ; M 11
(defglobal ?*sigmayy* - 0.0) ; M 02

(defglobal ?*phi* - 0.0) ; regression line orientation
(defglobal ?*r* - 0.0) ; regression line distance from origin

(defglobal ?*M-major* - 0.0) ; Moment around ellipse major axis
(defglobal ?*M-minor* - 0.0) ; Moment around ellipse minor axis

(defglobal ?*d-major* - 0.0) ; diameter on ellipse major axis
(defglobal ?*d-minor* - 0.0) ; diameter on ellipse minor axis

(defglobal ?*rho* - 0.0) ; ratio of major to minor axis diameters
(defglobal ?*delta* - 0.0) ; residual of a point
(defglobal ?*sigma* - 0.0) ; standard deviation

(defglobal ?*projection-x* - 0.0) ; x projection of point i on major axis
(defglobal ?*projection-y* - 0.0) ; y projection of point i on major axis

(defglobal ?*minx* - 145) ; for plot/graph boundaries
(defglobal ?*maxx* = -15)

(defglobal ?*miny* - -50) for plot/graph boundaries
(defglobal ?*maxy* = 110)

(defglobal ?*minz* - 0.0) ; for the currently active edge only
(defglobal ?*maxz* - 0.0) for the currently active edge only

(defglobal ?*defaultz* - 2.0) default pool depth to be used for objects
of unspecified or indeterminate depth

(defglobal ?*offsetx* - 0.0) ; displacement adde., to (x, y, z) positional
(defglobal ?*offsety* - 0.0) data to account for distance of the AUV
(defglobal ?*offsetz* - 0.0) from the origin (i.e. corner) of the

NPS pool coordinate system

(defglobal ?*time* = C.0) used to measure execution time

(defglobal ?*out* = stdout) verbose output default to stdout
otherwise ?*out* is reset to nil

(defglobal ?*gyroerror* - 0.0) ; User-provided gyro error (degrees)
(defglobal ?*newgyroerror* - 0.0) ; Expert system gyro error (degrees)
(defglobal ?*gyroerrortime* - 0.0) ; Average time of first wall found, used

; as input to drift rate computation

(defglobal ?*gyrodriftrate* - 0.0) ; User-provided drift rate
(defglobal ?*newgyrodriftrate* - 0.0) ; Expert system drift rate

(defglobal ?*number of fields* - 17) ; read only actual # of input fields

A sample fact (for syntax training use only!)

(deffacts rangel (Rangedata (time 0)
(x 2) (y 3) (z 4)
(phi 5) (theta 6) (psi 7)
(p 8) (q 9) (r 10)
(deltadiveplanes 11)
(deltarudders 12)
(rangea 13) (valida 1)

219

(range b 15) (valid b 1)
(speed 17) (processed TRUE))

;Functions

atan2 function matches C language and class text syntax.
;Calling order: (atan2 y x)

(defmethod atan2 ((?y NUMBER) (?x NUMBER (> ?x 0)))
(atan (/ ?y ?x)))

(defmethod atan2 ((y NUMBER (> ?y 0)) (?x NUMBER (< ?x 0)))
(+ (atan (/ ?y ?x)) (pi)))

(defmethod atan2 ((?y NUMBER (< ?y 0)) (?x NUMBER (< ?x 0)))
(- (atan (/ ?y ?x)) (pi)))

(defmethod atan2 ((?y NUMBER (> ?y 0)) (?x NUMBER (.?x 0)))
UI (pi) 2.0))

(defmethod atan2 ((?y NUMBER (< ?y 0)) (?x NUMBER (.?x 0)))
U (pi) -2.0))

(defmethod atan2 ((?y NUMBER (-?y 0)) (?x NUMBER (< ?x 0)))
(pi))

(defmethod atan2 ((?y NUMBER (=?y 0)) (?x NUMBER (= ?x 0)))
0.0)

(deffunction normalize (?x) ;x in degrees, resulting range (0 .. 360)

(bind ?norm ?x)
(while (< ?normn 0.0) (bind ?norm (+ ?norm 360.0)))
(while (>- ?norm 360.0) (bind ?norm (- ?norm 360.0)))
?norm

(deffunction norrnalize2 (?x) ;x in degrees, resulting range (-180 .. 180)

(bind ?norm ?x)
(while (< ?norm -180.0) (bind ?norrn (+ ?norm 360.0)))
(while (>= ?normn 180.0) (bind ?norm (- ?norm 360.0)))
?norm

(deffunction avg (?numberl ?nurnber2)
((+ ?numberl ?nurnber2) 2.0))

(deffunction degrees (?x) ;x in radians

((?x 180.0) (pi))

(deffunction radians (?x) ; x in radians

220

U*(?x 180.0) (pi))

;Boolean function to ask a yes/no question

(deffunction yes-or-no (?question) ' ?question' is the question string

(format t "%n%s? " ?question) ; ask the question
(bind ?answer (lowcase (sym-cat (read))))

(while (and (neq ?answer yes) (neq ?answer y) (neq ?answer yep)
(neq ?answer yeah) (neq ?answer ye) (neq ?answer yea)
(neq ?answer no) (neq ?answer n)
(neq ?answer nope) (neq ?answer nah))

(format t "%n Please answer yes or no: 11)
(bind ?answer (lowcase (sym-cat (read)))))

(if (or (eq ?answer yes) (eq ?answer y) (eq ?answer yep)
(eq ?answer yeah) (eq ?answer ye) (eq ?answer yea))

then TRUE
else FALSE)

(deffunction distance (?xl ?yl ?zl ?x2 ?y2 ?z2)

Triangle S and area calculation functions

(deffunction S (?nodelx ?nodely ?node2x ?node2y ?node3x ?node3y)

CCW triples are positive & CW triples are negative, matching conventions.

(bind ?trianglearea
(0.5 (~(-?node2x ?nodelx) (-?node3y ?nodely))

((?node3x ?nodelx) (-?node2y ?nodely)))))
?trianglearea)

(deffunction area (?nodelx ?nodely ?node2x ?node2y ?node3x ?node3y)

area values are always positive, matching conventions.

(bind ?trianglearea
(abs (* 0.5 (-(~?node2x ?nodelx) (-?node3y ?nodely))

(?node3x ?nodelx) (-?node2y ?nodely))))))
?trianglearea)

Exp !rt system start and data file reading rules

(defrule get-initial-expert-system-parameters-and-open-range-file

221

(declare (salience 100))
(initial-fact)

(dribble-off)
(system "my -f auvsonar.log auvsonar.log.bak")
(dribble-on auvsonar.log)

(printout t crlf crlf "Name of range data file to open? ")
(bind ?filename (read))
(open ?filename rangefile "r")
(printout t "Opened range data file " ?filename crlf)

(printout t crlf)
(if (yes-or-no "Are there more than 17 fields per Rangedata record")
then (printout t crlf "Enter number of data fields per record: ")

(bind ?*number of fields* (read))
(while (or (< ?*number of fields* 17) (> ?*number of fields* 20))

(printout t cr1f "tnter a value from 17..20: "
(bind ?*number of fields* (read))
(printout t crlf crlf)))

Determine output device for trace statements using 'format ?*out*'
(printout t crlf)
(if (yes-or-no "Do you want verbose output onscreen during analysis")
then (bind ?*out* stdout)
else (bind ?*out* nil))

(printout t crlf)
(if (yes-or-no "Do you want to input gyro error and gyro drift rate")
then (printout t crlf "Enter gyro error (degrees):

(bind ?*gyroerror* (normalize2 (read)))
(printout t crlf "Enter gyro drift rate (degs/hr) :
(bind ?*gyrodriftrate* (read)))

(printout t crlf)

(printout t crlf)
(printout t crlf "Enter offset distance to be added to X positions to ")
(printout t "account for the initial AUV displacement from pool corner: ")
(bind ?*offsetx* (read))
(printout t crlf)

(printout t crlf "Enter offset distance to be added to Y positions to ")
(printout t "account for the initial AUV displacement from pool corner: ")
(bind ?*offsety* (read))
(printout t crlf)

(printout t crlf "Enter offset depth to be added to Z positions to ")
(printout t "account for the initial AUV displacement from pool surface: ")
(bind ?*offsetz* (read))
(printout t crlf)

(printout t crlf "Saving previous files pool.graph and pool.auv:" crlf)
(printout t "my -f pool.auv pool.auv.bak")
(system "my -f pool.auv pool.auv.bak")
(printout t crlf)
(printout t "my -f pool.graph pool.graph.bak")
(system "my -f pool.graph pool.graph.bak")
(printout t crlf)

(open "pool.auv" auvfile "a")
(open "pool.graph" plotfile "a")

(printout auvfile crlf crlf
NPS AUV Sonar Classification Expert System"

" (pool data " ?filename ")"
crlf crlf crlf)

(printout auvfile crlf "All data values & type specifications are

222

"defined by the AUV Data Dictionary."
crlf)

(printout auvfile crlf "All coordinate values are relative to the
"NPS Pool Coordinate System."

crlf crlf crlf)
(printout auvfile crlf "AUV

?*offsetx* " " ?*offsety* " " ?*offsetz*
(xyz distances from AUV start position to pool origin)" crlf)

(printout plotfile " 105.0 95.0 " crlf "\"NPS AUV Sonar Classification
"Expert System (pool data " ?filename ") \.
crlf)

(printout plotfile " 100.0 -30.0 " crlf "\"AUV start..origin offset values:
?*offsetx*
?*offsety* .,
?*offsetz* " \"

crlf)

(printout plotfile " 105.0 -40.0 " crlf "\"Parametric regression constants:
"cl-" ?*cl*

" c2=" ?*c2*
"c3-" ?*C3" \

crlf)

(printout plotfile " 0.0 0.0 " crlf ; pool boundary outline
127.0 0.0 " crlf
127.0 67.5 " crlf

0.0 67.5 " crlf
0.0 0.0 " crlf " \" \"

crlf)

(printout auvfile crlf "Environment npspool.off"
crlf "Replayfile " ?filename
crlf "Replaysize " ?*number of fields*
crlf) ; simulator replay filename/filesize initialization

(if (or (<> ?*gyroerror* 0.0) (<> ?*gyrodriftrate* 0.0)) then
(printout plotfile " 100.0 -20.0 " crlf "\"AUV gyro error -

?*gyroerror* " degrees, gyro drift rate -
?*gyrodriftrate* " degrees/hour \
crlf))

(if (or (<> ?*gyroerror* 0.0) (<> ?*gyrodriftrate* 0.0)) then
(printout auvfile "gyroerror " ?*gyroerror* " degrees" crlf

"gyrodriftrate " ?*gyrodriftrate* " degrees/hour"
crlf))

(printout auvfile crlf ?*colorl* " Color scheme for regression lines
crlf) ; primary default color scheme

(bind ?*time* (time)) ; start clock timer

(assert (check-file-flag))

(defrule check-range-file

?check-file <- (check-file-flag)
(not (range-file-closed-flag))

(retract ?check-file) ; don't read this file again until point is processed

(assert (first-element-read-file-flag = (read rangefile)))
; first-element-read-file-flag will be asserted with first element from

the rangefile

223

(defrule skip-rthngefile-comments ; keep reading the file until we get a number

(declare (salience 100))
?first-element-read-file <- (first-element-read-file-flag ?file-element 6-EOF)
(test (not (numberp ?file-element)))

(retract ?first-element-read-file)
(printout t ".")
(readline rangefile) ;flush comments through end-of-line
(assert (check-file-flag))

(defrule read-remainder-of-range-record

(declare (salience 100))
?first-element-read-file <- (first-element-read-file-flag ?file-element &-EOF)
(test (numberp ?file-element))

(retract ?first-element-read-file)
(bind ?fieldl ?file-element)
(bind ?field2 (read rangefile))
(bind ?field3 (read rangefile))
(bind ?field4 (read rangefile))
(bind ?field5 (read rangefile))
(bind ?field6 (read rangefile))
(bind ?field7 (read rangefile))
(bind ?field8 (read rangefile))
(bind ?field9 (read rangefile))
(bind ?fieldl0 (read rangefile))
(bind ?fieidll (read rangefile))
(bind ?fieldl2 (read rangefile))
(bind ?fieldl3 (read rangefile))
(bind ?fieldl4 (read rangefile))
(bind ?fieldl5 (read rangefile))
(bind ?fieldl6 (read rangefile))
(bind ?fieldl7 (read rangefile))

(if (-?*number of fields* 18) then (bind ?fieldl8 (read rangefile)))
(if (-?*number of-fields* 19) then (bind ?fieldl9 (read rangefile)))
(if (-?*number-of-fields* 20) then (bind ?field20 (read rangefile)))

account for user-provided gyro error and gyro drift rate:

(bind ?totalerror (radians (+ ?*gyroerror*
(* ?*gyrodriftrate* (/ ?fieldl 3600.0)))))

(bind ?heading (- ?field7 ?totalerror))

;Don't assert a point if it has no range value (non-return)
(if (or (> ?fieldl3 1) (> ?fieldl4 1) (> ?fieldl5 1) (> ?fieldl6 1))
then

(assert (Range-data (time ?fieldl)
(x ?field2)
(y ?field3)
(z ?field4)
(phi ?field5)
(theta ?field6)
(psi ?heading)
(p ?fieldS)
(q ?field9)
(r ?fieldI0)
(delta-dive_planes ?fieldll)

224

(delta rudders ?fieldl2)
(range a ?fieldl3)
(range-b ?fieldl4)
(range c ?fieldl5)
(range d ?fieldl6)
(speed ?fieldl7))))

(format ?*out* 11%nCompleted reading range record; data time %3.lf" ?fieldl)
(assert (check-file-flag))

(defrule close-range-file

(declare (salience 100))
?first-element-read-file <- (first-element-read-file-flag EOF)

(retract ?first-element-read-file)
(close rangefile)
(assert (range-file-closed-flag))
(assert (Point (status NEW))) ; dummy point so last line (if any) is saved
(printout t crlf "Closed the input range file." crlf)

Point position calculation functions

Forward transducer (#1): reference frame is identical to AUV
Left transducer (#2): psi - AUV psi + PI 2
Right transducer (#3): psi - AUV psi - PI 2
Depth transducer (#4): theta - AUV theta + P1I 2

(deffunction delta_x (?range ?phi ?theta ?psi)

(if (- ?*transducer b* 1)
then (bind ?result (* ?range (*(cos ?theta) (Cos ?psi)))))

(if (- ?*transducer b* 2)
then (bind ?result (* ?range (*(cos ?phi) (cos (-?psi (/ (pi) 2)))))))

(if (- ?*transducer -b* 3) I Note caveat about yaw
then (bind ?result (* ?range (*(cos ?phi) (Cos (+ ?psi (/ (pi) 2)))))))

(if (- ?*transducer b* 4)
then (bind ?result (* ?range (sin ?theta))))

?result)

(deffunction delta_y (?range ?phi ?theta ?psi)
(if (- ?*transducer b* 1)

then (bind ?result (* ?range (*(cos ?theta) (sin ?psi)))))
(if (- ?*transducer b* 2)

then (bind ?result (* ?range (*(cos ?phi) (sin (-?psi (/ (pi) 2)))))))
(if (- ?*transducer -b* 3) ; INote caveat about yaw

then (bind ?result (* ?range (*(cos ?phi) (sin (+ ?psi (I(pi) 2)))))))
(if (- ?*transducer b* 4)

then (bind ?result (* ?range (sin ?phi)
?result)

(deffunction delta_z (?range ?phi ?theta ?psi)

(if (- ?*transducer b* 1)
then (bind ?result (* ?range (sin ?theta))))

(if (- ?*transducer b* 2)
then (bind ?result (- 0 (* ?range (sin ?phi)))))

225

(if (- ?*transducer b* 3)
then (bind ?result (* ?range (sin ?phi))))

(if (- ?*transducer b* 4)
then (bind ?result (* ?range (* (cos ?phi) (cos ?theta)))))

?result)

Point building rule

(defrule build-point-from-raw-AUV-range-data

; this rule currently handles only left transducer

(declare (salience 200))
?range_data<- (Rangedata (processed FALSE)

(time ?time) (x ?x) (y ?y) (z ?z)
(phi ?phi) (theta ?theta) (psi ?psi)
(range_b ?range)(validb ?valid))

(test (<> ?*transducer b* 0))

(bind ?range (* ?range ?*feet_per sonar unit*)); unit conversion of range slot
(bind ?delta x (deltax ?range ?phi ?theta ?psi))
(bind ?deltay (deltay ?range ?phi ?theta ?psi))
(bind ?delta z (delta z ?range ?phi ?theta ?psi))
(if (and (> .time 0) (> ?range 1)) then ; only make valid data points

(assert (Point (time ?time)
(x -(+ ?x ?delta x))
(y -(+ ?y ?delta-y))
(z -(+ ?z ?deltaz))
(valid ?valid)
(status NEW)))

print sonar return as 'o' and auv position as *
(printout plotfile (+ ?x ?delta x ?*offsetx*)

(+ ?y ?deltay ?*offsety*) crlf "o" crlf)
(printout plotfile (+ ?x ?*offsetx*)

(+ ?y ?*offsety*) crlf "*" crlf)
include coordinate offsets

(modify ?range_data (processed TRUE) (rangeb ?range))
(format ?*out* "%nAsserted and plotted a point for data time %3.lf" ?time))

else ; a bogus point
(modify ?range data (processed TRUE) (range-b ?range))

Two-dimensional parametric regression line analysis rules

(defrule regression-line-sliding-window-start-criteria

(declare (salience 300))
?start-new-window <- (start-new-window-flag)
; Find the next 5 NEW points
?pointl <- (Point (status NEW) (time ?timel)(x ?xl)(y ?yl)(z ?zl))
?point2 <- (Point (status NEW) (time ?time2) (x ?x2)(y ?y2)(z ?z2))
?point3 <- (Point (status NEW) (time ?time3)(x ?x3)(y ?y3) (z ?z3))
?point4 <- (Point (status NEW) (time ?time4)(x ?x4)(y ?y4)(z ?z4))
?point5 <- (Point (status NEW) (time ?time5) (x ?x5)(y ?y5) (z ?z5))
(test (< ?timel ?time2))
(test (< ?time2 ?time3))
(test (< ?time3 ?time4))
(test (< ?time4 ?time5))

(retract ?start-new-window)

226

These points are eligible and thus become ACTIVE
(modify ?pointl (status ACTIVE))
(modify ?point2 (status ACTIVE))
(modify ?point3 (status ACTIVE))
(modify ?point4 (status ACTIVE))
(modify ?point5 (status ACTIVE))
(bind ?*n* 5)
(bind ?*sumx* (+ ?xl ?x2 ?x3 ?x4 ?x5))
(bind ?*sumy* (+ ?yl ?y2 ?y3 ?y4 ?y5))
(bind ?*sumxy* (+ (~?xl ?yl) (*?x2 ?y2) (* ?x3 ?y3) (* ?x4 ?y4) (* ?xS ?y5)))
(bind ?*sumxx* (+ (~?Xl ?Xl) (*?x2 ?x2) (* ?x3 ?x3) (* ?x4 ?x4) (* ?x5 ?x5)))
(bind ?*sumyy* (+ (~?yl ?yl) (*?y2 ?y2) (* ?y3 ?y3) (* ?y4 ?y4) (* ?y5 ?y5)))
(bind ?*minz* (min ?zl ?z2 ?z3 ?z4 ?z5))
(bind ?*maxz* (max ?zl ?z2 ?z3 ?z4 ?z5)')

(assert (Regression line (start ?timel) (end ?time5) (status NEW)))
(format ?*out* "%n%7iRegression line sliding window start criteria met.")

(deffunction calculate-line-fit-and-update-global-variables (

global inputs: n, sumx, surny, sumxy, sumx sumyy

(bind ?*m*ffa5f* (I?*sumx* ?*n*))
(bind ?ftmeany* (/ *sijmy* ?*n*))

(bind ?*sigmaxx* (~?*sumxx* /(?*sumx* ?*sumx*) ?*n*)))
(bind ?*sigmaxy* (-?*sumxy* I(?*sumx* ?*sumy*) ?*n*)))
(bind ?*sigmayy* (~?*siumyy* ((?*sumy* ?*sumy*) ?*n*)))

(bind ?*phi* (*0.5 (atan2 (*-2.0 ?*sigmaxy*) (- ?*sigmayy* ?*sigmaxx*))

;note paper's caveat re frame of reference of phi

(bind ?*r* (+ (* ?tmeanx* (cos ?*phi*)) (* ?*meany* (sin ?*phi*))))

(bind ?term2 (sqrt (+ (~0.25 (-?*sigmayy* ?*sigmaxx*)
(~?*sigmayy* ?*sigmaxx*))

(?*sigmaxcy* ?*sigmaxy*))))

(bind ?*M-major* ((I(+ ?*sigmaxx* ?*sigmayy*) 2.0) ?term2))
(bind ?*M-minor* (+ (I(+ ?*sigmaxx* ?*sigmayy*) 2.0) ?term2))

(bind ?*d-major* (*4 (sqrt (I *M-minor* ?*n*))))
(bind ?*d-minor* (*4 (sqrt (I?*M-major* ?*n*))))

(bind ?*rho* (I?*d-minor*' ?*d-major*))
(format ?*out* "%nRegression line fit calculations complete.")

(def rule regression-line- initial-segnient-validity-check

(declare (salience 300))
;Get the NEW Regression-line and 5 ACTIVE Points
?line <- (Regression_line (start ?timel) (end ?time5) (status NEW))

?pointl <- (Point (time ?timel) (x ?xl) (y ?yl) (z ?zl) (valid ?validl))
?point5 <- (Point (time ?time5) (x ?x5) (y ?y5) (z ?z5) (valid ?valid5))

?point2 <- (Point (time ?time2) (x ?x2) (y ?y2) (z ?z2) (valid ?valid2))
(test (and (< ?timel ?time2) (> ?time5 ?time2)))
?point3 <- (Point (time ?time3) (x ?x3) (y ?y3) (z ?z3) (valid ?valid3))
(test (and (< ?timel ?time3) (> ?time5 ?time3) (<> ?time2 ?time3)))
?point4 <- (Point (time ?time4) (x ?x4) (y ?y4) (z ?z4) (valid ?valid4))
(test (and (< ?timel ?time4) (> ?time5 *?time4) (<> ?time2 ?time4)

227

(<> ?time3 ?time4)))

(calculate-line-fit-and-update-global-variables)

(bind ?*rho* (/ ?*d-minor* ?*d-major*))

(if (< ?*rho* ?*c3*) ; Validity check: Test II equation (25)

then ; initial line segment IS valid
(modify ?point-l (status ENDPOINT))
(modify ?point2 (status USED))
(modify ?point3 (status USED))
(modify ?point4 (status USED))
(modify ?point5 (status ENDPOINT))
(modify ?line (status CURRENT)

(r ?*r*)
(orientationi -(normalize (degrees

(atan2 (- ?y5 ?yl) (- ?x5 ?xl)))))
(correlation ?*rho*))

(format ?*out* "%nRegression line initial segment validity check passed.")

else ; initial line segment IS NOT valid
(modify ?pointl (status INVALID)) window slides by one to the right
(modify ?point2 (status NEW))
(modify ?point3 (status NEW))
(modify ?point4 (status NEW))
(modify ?point5 (status NEW))
(retract ?line)
(assert (start-new-window-flag)) ; begin building a new window

(format ?*out* "%nRegression line initial segment validity check fai.Lure.")
(format ?*out* "%n")

(defrule regression-line-window-expansion

(declare (salience 300))
; Get the CURRENT Regression line, start Point, end Point, and new Point
?current-line <- (Regressionline (start ?starttime) (end ?endtime)

(status CURRENT))
?new-point <- (Point (time ?newtime) (x ?newx) (y ?newy)(z ?newz)

(status NEW))
?start-point <- (Point (time ?starttime) (x ?startx) (y ?starty) (z ?startz))
?end-point <- (Point (time ?endtime) (x ?endx) (y ?endy) (z ?endz))

(bind ?*delta* (+ (* (cos ?*phi*) (- ?*meanx* ?newx))
(* (sin ?*phi*) (- ?*meany* ?newy)))) ; residual

(bind ?*sigma* (sqrt (/ ?*M-minor* (- ?*n* 2))))

(if (and (< ?*delta* (max (* ?*cl* ?*sigma*) ?*c2*)) ; Test I equation (23)
(< ?*rho* ?*c3*) ; Test II equation (25)
(> ?newtime 0)) ; ignore invalid points

then ;test passed, new point meets criteria
(modify ?new-poin. (status USED)) ; we just used this point
(bind ?*n* (+ ?*n* 1))
(bind ?*sumx* (+ ?*sumx* ?newx))
(bind ?*sumy* (+ ?*sumy* ?newy))
(bind ?*sumxy* (+ ?*sumxy* (* ?newx ?newy)))
(bind ?*sumxx* (+ ?*sumxx* (* ?newx ?newx)))
(bind ?*sumyy* (+ ?*sumyy* (* ?newy ?newy)))
(bind ?*minz* (min ?*minz* ?newz))
(bind ?*maxz* (max ?*maxz* ?newz))

228

;update globals and then line parameters
(calculate-line-f it-and--update-global-variables)

(bind ?correlation (~- 1 ?*rho*))

; update endpoint status slots for possible retraction of used data
(modify ?end-point (status USED))
(modify ?new-point (status ENDPOINT))

(modify ?current-line (r ?*r*)
(orientation -(normalize (degrees

(atan2 (- ?newy ?starty) (- ?newx ?startx)))))
(correlation ?correlation) ; value range tl-c3. .11
(end ?newtime))

(format ?*out* " Added another point to the regression line.%n");

else
(modify ?current-line (status VALID)) ; test failed, save old line

;current point retains status NEW unless it is a dummy point at time zero
(if (- 0 ?newtime) then (retract ?new-point))

;initial node of new segment

(bind ?*delta* (+ (~(cos ?*piii*) (- ?*meanx* ?startx))
((sin ?*phi*) (- ?*meany* ?starty)))) ;residual

(bind ?*projection-x* (+ ?startx (*?*delta* (cos ?*phi*))))
(bind ?*projection-y* (+ ?starty (*?*delta* (sin ?*phi*))))
(bind ?start-projection-x ?*projection-x*)
(bind ?start-projection-y ?*projection-y*)
(bind ?correlation (- 1 ?*rho*))
(assert (Node (time ?starttime) ;edge's virtual start node

(x ?*projection-x*)
(y ?*projection-y*)
(z ?startz)
(accuracy ?*d-minor*) ; minor axis diameter
(confidence ?correlation))) ; using elliptical thinness

(format ?*out* " Valid node completed, data time %3.lf%n" ?starttime)

(printout plotfile (+ ?*projection-x* ?*offsetx*)""
(+ ?*projection-y* ?*offsety*) crlf)

(format ?*out* " Projection endpoints (%5.1f, %5.1f)"
(+ ?*projection-x* ?*offsetx*)
(+ ?*projection-y* ?*offsety*))

final node of new segment

(bind ?*delta* (+ (*(cos ?*phi*) (- ?*meanx* ?endx))
((sin ?*phi*) (- ?*meany* ?endy)))) ; residual

(bind ?*projection-x* (+ ?endx (*?*delta* (cos ?*phi*))))
(bind ?*projection-y* (+ ?endy (*?*delta* (sin ?*phi*))))
(bind ?confidence (-1 ?*rho*))
(assert (Node (time ?endtime) ; edge's virtual end node

(x ?*projection-x*)
(y ?*projection-y*)
(z ?endz)
(accuracy ?*d-minorl) ;minor axis diameter
(confidence ?confidence))) ;using elliptical th~nness

(format ?*out* "(%5.1f, %5.lf)%n"
(+ ?*projection-x* ?*offsetx*)
(+ ?*projection-y* ?*offsety*))

(format ?*out* " Raw data endpoints (%5.1f, %5.1f) (%5.lf, %5.lf)%n"
(+ ?startx ?*offsetx*)
(+ ?starty ?*offsety*)
(+ ?endx ?*offsetx*)

229

(+ ?endy ?*offsety*))
(format ?*out* 11Valid node completed, data time %3.lf %n" ?endtime)
(printout plotfile (+ ?*projection-x* ?*OffsetX*)"

(+ ?*projection-y* ?*offsety*) crlf "\'\"crlf)

(assert (Edge (start ?starttime)
(end ?endtime)
(averagez -(avg ?*minz* ?*maxz*))))

(format ?*out* " Valid edge completed, data times (%3.lf .. %3.1f),"
?starttime ?endtime)

(format ?*out* 11 averagez - %3.1f, line r -%31,
(avg ?*minz* ?*maxz*) ?*r*)

(format ?*out* 11line orientation =%3.lf degrees%n"
(normalize (degrees (atan2 (-?newy ?starty) (- ?newx ?startx)))))

(format auvfile
"%nPoint %5.lf %4.lf %3.lf time %4.lf"

(+ ?start-projection-x ?*offsetx*)
(+ ?start-projection-y ?*offsety*)
(+ ?startz ?*offsetz*)
7 start time)
;depth range 0. .8 ft, time is optional

(format auvfile
"%nPoint %5.lf %4.lf %3.lf time %4.lf"

(+ ?*projection-x* ?*offsetx*)
(+ ?*projection-y* ?*offsety*)
(+ ?endz ?* offsetz*)
?endtime)

(format auvfile
"%nSegment %5.lf %4.lf %3.lf %5.lf %4.lf %3.lf time %4.lf"

(+ ?start-projection-x ?*offseix*)
(+ ?start-projection-y ?*offsety*)
(+ (/ (+ ?tminz* ?*maxz*) 2.0) ?*offsetz*)
(+ ?*projection-x* ?*offsetx*)
(+ ?*projection-y* ?*offsety*)
(+ (/ (+ ?*minz*' ?*maxz*) 2.0) ?*offsetz*)
?endtime)

(assert (check-file-flag))
(assert (start-new-window-flag))
(format ?*out* "Valid regression line actions completed, data time %3.lf'

?endt ime)
(format ?*out* "%n%n")

Rules for retraction of excess data facts (garbage collection)

(def rule retract-excess-Range_data

(retract-excess-data TRUE)
?range-data <- (Range data (processed TRUE))

(retract ?range data)

(defrule retract-excess-Point

(retract-excess-data TRUE)
?point <- (Point (status INVALID I USED))

(retract ?point)

230

(defrule retract-excess-endPoint

(retract-excess-data TRUE)
?point <- (Point (status ENDPOINT) (time ?point-time))
?node <- (Node (time ?node-time))
(test (- ?point-time ?node-time))

(retract ?point)

; Gyro error rules

(defrule determine-initial-gyro-error

(declare (salience 300))
?pool <- (location pool) ; this rule only works in the pool
?poly <- (Polyhedron (classification WALL) (start ?polystart) (end ?polyend)

(status COMPLETE))
(test (- ?*newgyroerror* 0.0)) ; first wall provides best est, don't repeat
?line <- (Regressionline (start ?start) (end ?end) (orientation ?orientation)

(status USED I USEDFORAREA))
(test (- ?polyend ?end))

?pointl <- (Point (time ?timel) (x ?xl) (y ?yl) (z ?zl))
(test (- ?timel ?start))
?point2 <- (Point (time ?time2) (x ?x2) (y ?y2) (z ?z2))
(test (- ?time2 ?end))
(test (>- (distance ?xl ?yl ?zl ?x2 ?y2 ?z2) 2.0)) ; skip short segments

(bind ?deltal (normalize2 ?orientation 0.0)))
(bind ?delta2 (normalize2 (- ?orientation 90.0)))
(bind ?delta3 (normalize2 (- ?orientation 180.0)))
(bind ?delta4 (normalize2 (- ?orientation 270.0)))

(if (< (abs ?deltal) (min (abs ?delta2) (abs ?delta3) (abs ?delta4))) then
(bind ?*newgyroerror* ?deltal))

(if (< (abs ?delta2) (min (abs ?deltal) (abs ?delta3) (abs ?delta4))) then
(bind ?*newgyroerror* ?delta2))

(if (< (abs ?delta3) (min (abs ?delta2) (abs ?deltal) (abs ?delta4))) then
(bind ?*newgyroerror* ?delta3))

(if (< (abs ?delta4) (min (abs ?delta2) (abs ?6alta3) (abs ?deltal))) then
(bind ?*newgyroerror* ?delta4))

(bind ?*gyroerrortime* (avg ?start ?end)) ; average time of wall segment
(format t "%nUser-provided gyro error - %4.lf degrees" ?*gyroerror*)
(format t "%nWall orientation - %4.lf degrees" ?orientation)
(format t " for time %3.lf (%3.lf .. %3.1f)"

(avg ?start ?end) ?start ?end)
(format t "%nExpert system gyro error - %4.lf degrees" ?*newgyroerror*)

(defrule determine-gyro-drift-rate

(declare (salience 300))
?pool <- (location pool) ; this rule only works in the pool
?poly <- (Polyhedron (classification WALL) (start ?polystart) (end ?polyend)

(status COMPLETE))
(test (<> ?*newgyroerror* 0.0)) ; perform only if new gyro error calculated
?line <- (Regressionline (start ?start)(end ?end)(orientation ?orientation)

(status USED I USEDFORAREA))
(test (- ?polyend ?end))

231

(bind ?deltal (normalize2 (-?orientation ?*newgyroerror* 0.0))
(bind ?delta2 (normalize2 (-?orientation ?*newgyroerror* 90.0)))
(bind ?delta3 (normalize2 (-?orientation ?*newgyroerror* 180.0)))
(bind ?delta4 (normalize2 (-?orientation ?*newgyroerror* 270.0)))

(if (< (abs ?deltal) (min (abs ?delta2) (abs ?delta3) (abs ?delta4))) then
(bind ?*newgyrodrift rate4 ?deltal))

(if (< (abs ?delta2) (min (abs ?deltal) (abs ?delta3) (abs ?delta4))) then
(bind ?*newgyrodriftrate* ?delta2))

(if (< (abs ?delta3) (min (abs ?delta2) (abs ?deltal) (abs ?delta4))) then
(bind ?*newgyrodriftrate* ?delta3))

(if (< (abs ?delta4) (min (abs ?delta2) (abs ?delta3) (abs ?deltal))) then
(bind ?*newgyrodriftrate* ?delta4))

(format t "'%nWall orientation - %4.1f degrees" ?orientation)
(format t " for time %3.lf (%3.lf .. %31)

(avg ?start ?end) ?start ?end)
(format t "%nCurrent gyro error - %4.lf degrees%n"

(1- ?*newgyrodriftrate* ?*newgyroerror*))
(bind ?*newgyrodriftrate* (* 3600.0 (/ ?*newgyrodriftrate*

(- (avg ?start ?end) ?*gyroerrortime*))))

(if (<- (abs ?*newgyrodriftrate*) 200.0) then
(format t "Expert system gyro drift rate -%4.lf degrees/hour %n"

?*newgyrodziftrate*))

;Completion!

(defrule plot-pool-graph-file-when-done ; this rule is the last to be fired

(declare (salience 0)) ;all other rules take precedence
?range-file-closed <- (range-file-closed-flag)

(format t
"%n%nElapsed time to perform sonar classification: %3.lf seconds.%n%n"
(- (time) ?*time*))

all file outputs complete
(close plotfile)
(close auvfile)

(printout t crlf crlf "Sending pool.auv to iris graphics subdirectory."
crlf)

first save old copy of file to pool.bak
(printout t crlf "rcp gemini:-brutzman/clips/pool.auv.bak"

"irisl:-brutzman/graphics/pool.auv.bak" crlf)
(system "rcp gemini:-brutzman/clips/pool.auv.bak"

"iris : -brutzman/graphics/pool .auv.bak")

(printout t crlf "rcp gemini:-brutzman/clips/pool.auv"
"iris : -brutzman/graphics/pool .auv" crlf)

(system "rcp gemini :-brutzman/clips/pool .auv"
"iris : -brutzman/graphics/pool .auv")

(printout t crlf 'rcp gemini:-brutzman/clips/pool.auv"
"irisi: brutzman/preview/pool.auv" crlf)

(system "rcp gemini: -brutzman/clips/pool .auv"
"iris : -brutzman/preview/pool .auv")

You must be running under sunview on a workstation for sunplot to work.
(printout t crlf crlf "The generated pool.graph sunpiot follows:" crlf crlf)

(print-at t "graph -b -g 1 -1 \"NPS AUV Sonar Classification Expert System

232

"\" -x 145 -15 -y -50 110 < pool.graph I sunplot -c 650"
crlf crlf)

(system "graph -b -g 1 -1 \"NPS AUV Sonar Classification Expert System
"V' -x 145 -15 -y -50 110 < pool.graph I sunplot -c 650")

(system "rm core") ; remove core dump file which resulted
if not running under sunview

(if (yes-or-no " Do you want to print the screen log file")
then (dribble-off)

(system "enscript -G -r auvsonar.log"))

(if (yes-or-no "Do you want a hard copy of the sonar plot")
then
(open "pool.auv" auvfile "a")
(open "pool.graph" plotfile "a")
(printout t crlf)
(if (yes-or-no "Do you want to add a comment line to the plot")
then (printout t crlf crlf "Enter comment: ")

(bind ?comments (readline))
(printout auvfile crlf "Comment: " ?comments crlf)
(printout plotfile " 115 80 " crlf "\" ?comments " \" " crlf))

(printout t crlf crlf "The generated pool.graph is being plotted:"
crlf crlf)

(printout t "graph -b -g 1 -1 \"NPS AUV Sonar Classification Expert System
"\" -x 145 -15 -y -50 110 < pool.graph I lpr -g -h -Pap2"
crlf crlf)

(system "graph -b -g 1 -1 \"NPS AUV Sonar Classification Expert System
"\" -x 145 -15 -y -50 110 < pool.graph I lpr -g -h -Pap2")

; all file outputs complete
(close plotfile)
(close auvfile)

(printout t crlf "The generated pool.auv file follows:" crlf crlf)
(system "more pool.auv")
(printout t crlf crlf crlf)

Polyhedron output function and rules

(deffunction outputpolyhedron (?starttime ?endtime
?startx ?starty ?startz
?endx ?endy ?endz
?classification ?comment)

(format t "%n%nThe polyhedron at times (%3.lf .. %3.1f)
?starttime ?endtime)

(printout t "has classification " ?classification "." crlf crlf)

(format auvfile
"%n%s %5.lf %4.lf %3.lf %5.lf %4.lf %3.lf time %4.lf %s"

?classification
(+ ?startx ?*offsetx*)
(+ ?starty ?*offsety*)
(+ ?startz ?*offsetz*)
(+ ?endx ?*offsetx*)
(+ ?endy ?*offsety*)
(+ ?endz ?*offsetz*)
?endtime
?comment)

(format auvfile "%n")

(format ?*out* "%n%n")

233

(format ?*out*
"%n%s %5.lf %4.lf %3.1f %5.lf %4.lf %3.lf time %4.lf %311

?classification
(+ ?startx ?*offsetx*)
(+ ?starty ?*offsety*)
(+ ?startz ?*OffsetZ*)
(+ ?endx ?*offsetx*)
(+ ?endy ?*Offsety*)
(+ ?endz ?*offsetz*)
?endtime
?comment)

(format ?*out* 11%n%n1)

(de Zrule change-colors-for-inferred-edges -when-done

(declare (salience 40)) ; pre-completion rules take precedence
?range-file-closed <- (range-file-closed-flag)

(printout auvfile crlf crlf ?*color2* " Color scheme for inferred edges
crlf) ; secondary default color scheme

(defrule output-polyhedrons-with-inferred-edges-when-done

(declare (salience 30)) ; pre-completion rules take precedence
?range-file-closed <- (range-file-closed-flag)
?poly <- (Polyhedron (status COMPLETE I USED -FOR_-AREA)

(start ?startpolytime)
(end ?endpolytime)
(startx ?startx) (starty ?starty) (startz ?startz)
(trait INFERREDEDGE)
(classification WALL))

node matches end of polyhedron
?node <- (Node (time ?nodetime) (x ?nodex) (y ?nodey) (z ?nodez))
(test (- ?endpolytime ?nodetime))

(output polyhedron ?startpolytime ?endpolytime
?startx ?starty 0. 0
?nodex ?nodey 8.0
"WALL"

(inferred edge)")

(defrule change-colors-for-hidden-edges-when-done

(declare (salience 20)) ; pre-completion rules take precedence
?range-file-closed <- (range-file-closed-flag)

(printout auvfile crlf crlf ?*color3* " Color scheme for hidden edges
crlf) ; tertiary default color scheme

(def rule output-object-polyhedrons-with-hidden-edges-when-done

(declare (salience 10)) ;pre-completion rules take precedence
?range-file-closed <- (range-file-closed-flag)

234

?poly <- (Polyhedron (status COMPLETE I USEDFORAREA)
(start ?startpolytime)
(end ?endpolytime)
(startx ?startx) (starty ?starty) (startz ?startz)
(trait HIDDENEDGE)
(classification WALL))

node matches end of polyhedron
?node <- (Node (time ?nodetime) (x ?nodex) (y ?nodey) (z ?nodez))
(test (- ?endpolytime ?nodetime))

(outputpolyhedron ?startpolytime ?endpolytime
?startx ?starty 0.0
?nodex ?nodey 8.0
"WALL"
"(hidden edge)")

Polyhedron building rules

(defrule polyhedron-building-start

(declare (salience 430)) ; lower salience value than polyhedron-building
?line <- (Regressionline (status VALID)

(start ?starttime) (end ?endtime))

?start-node <- (Node (time ?nodetime)
(accuracy ?accuracyl)
(x ?startx) (y ?starty) (z ?startz))

(test (- ?starttime ?nodetime))

?end-node <- (Node (time ?endnodetime)
(accuracy ?accuracy2)
(x ?endx) (y ?endy) (z ?endz))

(test (- ?endtime ?endnodetime))

(assert (Polyhedron (status ACTIVE)
(start ?starttime) (end ?endtime)
(startx ?startx) (starty ?starty) (startz ?startz)
(centroidx -(+ ?startx ?endx))
(centroidy -(+ ?starty ?endy))
(centroidz -(+ ?startz ?endz))
(sidecount 1)
(accuracy -(max ?accuracyl ?accuracy2))
(trait OBJECT BUILDINGBASED)
(classification WALL)))

(modify ?line (status USED))

(bind ?length (distance ?startx ?starty ?startz ?endx ?endy ?endz))

(if (>- ?length ?*minwalllength*)
then (output-polyhedron ?starttime ?endtime

?startx ?starty 0.0
?endx ?endy 8.0
WALL "(new polyhedron start)"))

(defrule polyhedron-building-continuation

This rule tests the newest edge in relation to the most recent previous edge
of the currently ACTIVE polyhedron.

235

If the edges are too far apart, the previous polyhedron is COMPLETE and the
new edge is ignored in order for it to begin a new polyhedron.

If the edges are colinear, the new edge is included as part of the
currently ACTIVE polyhedron.

; If the edges are concave, the previous polyhedron is COMPLETE and the new
edge is ignored in order to let it begin a new polyhedron.

; If the edges are convex, the new edge is included as part of the
; currently ACTIVE polyhedron, and the polyhedron is reclassified

from WALL to OBJECT.

Specific polyhedron OBJECT reclassifications will be made by higher level rules.

(declare (salience 440)) ; higher salience value than polyhedron start
?poly <- (Polyhedron (status ACTIVE)

(start ?startpolytime)
(end ?endpolytime)
(accuracy ?polyaccuracy)
(startx ?startx)
(starty ?starty)
(startz ?startz)
(centroidx ?centroidx)
(centroidy ?centroidy)
(centroidz ?centroidz)
(sidecount ?sidecount)
(area ?area)
(classification ?classification))

linel is most recent valid regression line included in the polyhedron
?linel <- (Regressionline (status USED)

(start ?startlineltime)
(end ?endlineltime)
(orientation ?orientationl))

(test (- ?endpolytime ?endlineltime))

line2 is newest valid regression line to be evaluated
?line2 <- (Regressionline (status VALID)

(start ?startline2time)
(end ?endline2time)
(orientation ?orientation2))

nodel matches end of linel (most recent valid regression line)
?nodel <- (Node (time ?nodeltime)

(accuracy ?accuracy2)
(x ?.iodelx) (y ?nodely) (z ?nodelz))

(test (- ?endlineltime ?nodeltime))

node2 matches start of line2
?node2 <- (Node (time ?node2time)

(accuracy ?accuracyl)
(x ?node2x) (y ?node2y) (z ?node2z))

(test (- ?startline2time ?node2time))

node3 matches end of line2
?node3 <- (Node (time ?node3time)

(accuracy ?accuracy3)
(x ?node3x) (y ?node3y) (z ?node3z))

(test (- ?endline2time ?node3time))

(bind ?distance (distance ?nodelx ?nodely ?nodelz ?node2x ?node2y ?node2z))

if distance is too great, don't continue building polyhedron with new edge
(if (> ?distance ?*max edgedistance*)
then (modify ?poly (status COMPLETE)

236

(area -(abs ?area))
(centroidx -I?centroidx ?sidecount 2)) ; 2 points/side
(centroidy -I?centroidy ?sidecount 2))
(centroidz -I?centroidz ?sidecount 2))
(sidecounteri ?sidecount)
(sidecounter2 ?sidecount))

if polyhedron was not a WALL, assert a HIDDENEDGE wall for it
(if (not (eq ?classification WALL))

b then (format t "%nPolyhedron OBJECT (%3.lf .. %3.1f)
?startpolytime ?endpolytime)

(format t "has area %3.lf%n' (abs ?area))
(format auvfile " (prior object area was %3.1f)" (abs ?area))
(assert (Polyhedron (status COMPLETE)

(start ?startpolytime)
(end ?endpolytime)
(startx ?startx)
(starty ?starty)
(startz ?startz)
(centroidx -(avg ?startx ?node3x))
(centroidy -(avg ?starty ?node3y))
(centroidz -(avg ?startz ?node3z))
(sidecount 1)
(accuracy ?polyaccuracy)
(trait HIDDEN EDGE)
(classification WALL))))

(bind ?length (distance ?node2x ?node2y ?node2z ?node3x ?node3y ?node3z))

if distance is close enough, then test colinear/convex/concave
(if (<= ?distance ?*max -edge-distance*)
then (if (=(abs (normalize2 (- ?orientationl ?orientation2)))

?*max -edge angle*)
then ;colinear edge found and added to polyhedron

;also add 'S' area between start point and new segments
(bind ?triangleareal (S ?startx ?starty

?nodelx ?nodely ?node2x ?node2y))
(bind ?trianglearea2 (S ?startx ?starty

?node2x ?node2y ?node3x ?node3y))
(modify ?poly (end ?endline2time)

(area =(+ ?area ?triangleareal ?trianglearea2))
(centroidx (+?centroidx ?node2x ?node3x))
(centroidy -+?centroidy ?node2y ?node3y))
(=entroidz (+?centroidz ?node2z ?node3z))

(sidecount (+?sidecount 1)))
(modify ?line2 (status USED))

(assert (Polyhedron (status COMPLETE)
(start ?endlineltine)
(end ?startline2time)
(startx ?nodelx)
(starty ?nodely)
(startz ?nodelz)
(centroidx -(avg ?nodelx ?node2x))
(centroidy -(avg ?nodely ?node2y))
(centroidz -(avg ?nodelz ?node2z))
(sidecount 1)
(accuracy -(max ?accuracyl ?accuracy2))
(trait INFERRED EDGE)
(classification WALL)))

(if (-?length ?*min_wall_length*)
then (output polyhedron ?startline2time ?endline2time

?node2x ?node2y 0.0
?node3x ?node3y 8.0
"WALL"
"(added colinear edge)"))

237

else ;test for convex edge to continue building,
; otherwise edge is concave and polyhedron is complete.
;note this rule currently coded to work only for left transducer

(if (< (normaiize2 (- ?orientation2 ?orientationl)) 0.0)

th~en ;convex edge found, and joir. d to polyhedron
;also add 'S area between s.art point and new segments

(bind ?triangleareal (S ?startx ?starty
?nodelx ?nodely ?node2x ?node2y)) 4

(bind ?trianglearea2 (S ?startx ?starty
?node2x ?node2y ?node3x ?node3y))

(modify ?poly (end ?endline2time)
(classification OBJECT)
(area -+?area ?triangleareal

?trianglearea2))
(accuracy -(max ?accuracy2

?accuracy3 ?polyaccuracy))
(centroidx -+?centroidx: ?node2x ?node3x))
(centroidy -+?centroidy ?node2y ?node3y))
(centroidz -+?centroidz ?node2z ?node3z))
(sidecount (+?sidecount 1f)

(modify ?line2 (status USED))

(assert (Polyhedron (status COMPLETE)
(start ?endlineltime)
(end ?startiine2time)
(startx ?nodelx)
(starty ?nodely)
(startz ?nodelz)
(centroidx -(avg ?nodelx ?node2x))
(centroidy -(avg ?nodely ?node2y))
(centroidz -(avg ?nodelz ?node2z))
(sidecount 1)

(accuracy -(max ?accuracyl ?accuracy2))
(trait INFERRED EDGE)
(classification WALL)))T

(if (-?length ?*min_wall_length*?
then (output polyhedron ?startline2time ?endline2time

?node2x ?node2y 0.0
?node3x ?node3y 8.0
"WALL"
"(added convex edge) "))

else ; concave edge found so don't continue building polyhedron
(modify ?poly (status COMPLETE)

(area -(abs ?area))
(centroidx -I?centroidx ?sidecount 2))
(centroidy -I?centroidy ?sidecount 2))
(centroidz -I?centroidz ?sidecount 2))
(sidecounteri ?sidecount)
(sidecounter2 ?sidecount))

if polyhedron was not a WALL, assert a HIDDENEDGE wall
(if (not (eq ?classification WALL))
then (format t "%nPolyhedron OBJECT (%3.lf .. %3.1f)

?startpolytime ?endpolytime)
(format t "has area %3.lf%n" (abs ?area))

(format auvfile " (prior object area was %3. lf) " (abs ?ar~a))
(assert (Polyhedron (status COMPLETE)

(start ?startpolytime)
(end ?endpolytime)
(startx ?startx)
(starty ?starty)
(startz ?startz)
(centroidx -(avg ?startx ?node3x))
(centroidy -(avg ?starty ?node3y))

238

(centroidz -(avg ?startz ?node3z))
(sidecount 1)
(accuracy ?polyaccuracy)
(trait HIDDEN EDGE)
(classification WALL)T))

(defrule complete-active-polyhedron-after-file-reading-finished

(declare (salience 420)) ; polyhedron determination rules take precedence
?range-file-closed <- (range-file-closed-flag)

?poly <- (Polyhedron (status ACTIVE)
(start ?startpolytime)
(end ?endpolytime)
(startx ?startx)
(starty ?starty)
(startz ?startz)
(accuracy ?polyaccuracy)
(centroidx ?centroidx)
(centroidy ?centroidy)
(centroidz ?centroidz)
(sidecount ?sidecount)
(area ?area)
(classification ?classification))

node matches end of polyhedron
?node <- (Node (time ?nodetime)

(accuiacy ?accuracy)
(x ?nodex) (y ?nodey) (z ?nodez))

(test (- ?endpolytime ?nodetime))

(modify ?poly (status COMPLETE)
area -(abs ?area))
(centroidx -(I ?centroidx ?sidecount 2)) 2 points/side
(centroidy -(/ ?centroidy ?sidecount 2))
(centroidz -(U ?centroidz ?sidecount 2))
(sidecounterl ?sidecount)
(sidecounter2 ?sidecount))

if polyhedron was not a WALL, assert a HIDDENEDGE wall for it
(if (not (eq ?classification WALL))
then (format t "%nPolyhedron OBJECT (%3.1f .. %3.1f) has area %3.lf%n"

?startpolytime ?endpolytime (abs ?area))
(format auvfile " (prior object area was %3.1f)" (abs ?area))
(assert (Polyhedron (status COMPLETE)

(start ?startpolytime)
(end ?endpolytime)
(startx ?startx)
(starty ?starty)
(startz ?startz)
(centroidx -(avg ?startx ?nodex))
(centroidy -(avg ?starty ?nodey))
(centroidz -(avg ?startz ?nodez))
(sidecount 1)
(accuracy ?polyaccuracy)
(trait HIDDEN EDGE)
(classification WALL)[))

Completed polyhedron area calculation rules

239

(defrule oldareal

; compute-polyhedron-area-contribution-from-regresion-edges

ideclare (salience 415)) polyhedron determination rules take precedence
?poly <- (Polyhedron (status COMPLETE)

(trait OBJECT -BUILDINGBASED)
(classification OBJECT)
(start ?startpolytime)
(end ?endpolytime)
(startx ?startx)
(starty ?starty)
(startz ?startz)
(centroidx ?node3x)
(centroidy ?node3y)
(centroidz ?node3z)
(sidecount ?sidecount)
(sidecounterl ?sidecounterl)
(area ?area))

(test (> ?sidecounterl 0)) ;prevent infinite recursion

;get the next line contributing to polyhedron area
?edge <- (Edge (start ?startedgetime)

(end ?endedgetime)
(status USED))

(test (and (-?startedgetime ?startpolytime)
(-?endedgetime ?endpolyt me)))

nodel matches start of edge
?nodel <- (Node (time ?nodeltime)

(x ?nodelx) (y ?nodely) (z ?nodelz))
(test (- ?startedgetime, ?nodeltime))

node2 matches end of edge
?node2 <- (Node (time ?node2time)

(x ?node2x) (y ?node2y) (z ?node2z))
(test (- ?endedgetime ?node2time))

(bind ?trianglearea (S ?nodelx ?nodely ?node2x ?node2y ?node3x ?node3y))

(modify ?poly (sidecounteri (?sidecounterl 1))
(area (+?area (abs ?trianglearea))))

(modify ?edge (status USEDFORAREA))

(defrule oldarea2

compute-polyhedron-area-contribution-from-inferred-walls

(declare (salience 410)) ; polyhedron determination rules take precedence
?poly <- (Polyhedron (status COMPLETE)

(trait OBJECT BUILDINGBASED)
(classification OBJECT)
(start ?startpolytime)
(end ?endpolytime)
(startx ?startx)
(starty ?starty)
(startz ?startz)
(centroidx ?node3x)
(centroidy ?node3y)

240

(centroidz ?node3z)
(sidecount ?3idecount)
(sidecounter2 ?sidecounter2)
(area ?area))

(test (> ?sidecounter2 0)) ;prevent infinite recursion

get a matching inferred wall or hidden edge polyhedron
?poly2 <- (Polyhedron (status COMPLETE)

V(trait INFERRED _EDGE I HIDDENEDGE)
(classification WALL)
(start ?startpoly2time)
(end ?endpoly2time)
(startx ?nodelx)
(starty ?nodely)
(startz ?nodelz))

(test (and (-?startpoly2time ?startpolytime)
(=?endpoly2time ?endpolytime)))

node2 matches the end of this inferred/hidden wall
?node2 <- (Node (time ?node2time)

(x ?node2x) (y ?node2y) (z ?node2z))
(test (- ?endpoly2time ?node2time))

(bind ?trianglearea (S ?nodelx ?nodely ?node2x ?node2y ?node3x ?node3y))

(modify ?poly (sidecounter2 (-?sidecounter2 1))
(area (+?area (abs ?trianglearea))))

(modify ?poly2 (status USEDFORAREA))

(if (eq ?sidecounter2 1) ;last edge triangle has been added
then (format t "%nPolyhedron OBJECT (%3.lf .. %3.1f) has area %3.lf%n"

?startpoiytime ?endpolytime (+ ?area (abs ?trianglearea))))

Object classification rules: the top level at last!

(defrule classify-pool-objects

(declare (salience 400)) polyhedron determination rules take precedence

?poly <- (Polyhedron (status COMPLETE)
(trait OBJECT BUILDINGBASED)
(classification OBJECT)
(start ?startpolytime)
(end ?endpolytime)
(startx ?startx)
(starty ?starty)
(startz ?startz)
(centroidx ?centroidx)
(centroidy ?centroidy)
(centroidz ?centroidz)
(sidecount ?sidecount)
(area ?area))

node matches end of polyhedron
?node <- (Node (time ?nodetime)

(accuracy ?accuracy)
(x ?endx) (y ?endy) (z ?endz))

(test (- ?endpolytime ?nodetime))

241

Reclassify long skinny objects as walls

(bind ?length (distance ?startx ?starty ?startz ?endx ?endy ?endz))
(if (<- (/ ?area ?length ?length) ?*wall-thinness-ratio*)
then (bind ?area 0.0)

(modify ?poly (classification WALL) (area 0.0))
(format t "%n*** OBJECT at (%3.lf .. %3.1f) reclassified as a WALL.%n"

?startpolytime ?endpolytime)

Mine classification

(if (and (>- ?area 10.0) (<- ?area 100.0)) ; area criteria test
then (modify ?poly (classification MINE))

(format t "%n%nThe polyhedron at times (%3.lf .. %3.1f)
?startpolytime ?endpolytime)

(printout t "has classificatic'n MINE." crlf crlf)
(format auvfile
'%n%s %5.lf %4.lf %3.1f %5.1f time %4.lf"

MINE
(+ ?centroidx ?*offsetx*)
(+ ?centroidy ?*offsety*)
(+ ?centroidz ?*offsetz*)
(/ ?area (pi) 2 6) ;radius
?endpolytime)

(format auvfile "%n")

(format ?*out*
"%n%s %5.lf %4.lf %3.1f %5.lf time %4.lf"

Mine
(+I ?centroidx ?*offsetx*)
(+ ?centroidy ?*offsety*)
(+ ?centroidz ?*offsetz*)
(/ ?area (pi) 2 6) ;radius &sonar beamwidth fudge factor
?endpolyt.*ne)

(format ?*out* "1%n"1))

242

LIST OF REFERENCES

[Ref. 1] Brutzman, D.P., Compton, M.A., "AUV Research at the Naval Postgraduate
School," Sea Technology, v. 32, n. 12, pp. 35-40, December 1991.

[Ref. 2] Hartmann, G.K., Truver, S.C., Weapons that Wait, Updated Edition, Naval
Institute Press, Annapolis, Maryland, 1991.

[Ref. 3] Home, C.F., "Mine Warfare Is With Us and Will Be With Us," Proceedings,
U.S. Naval Institute, v. 117/7/1061, p.63, July 1991.

[Ref. 4] Good, Lt. Michael R., Design and Construction of a Second Generation
AUV, Master's Thesis, Naval Postgraduate School, Monterey, California,
1989.

[Ref. 5] Healey, A.J., McGhee, R.B., Christi, R., Papoulias, F.A., Kwak, S.H.,
Kanayama, Y., Lee, Y., "Mission Planning, Execution and Data Analysis for
the NPS AUV II Autonomous Underwater Vehicle," Proceedings of 1st
IARP Workshop on Mobile Robots for Subsea Environments, Monterey,
California (1991), pp. 177-186.

[Ref. 6] Floyd, C.A., Design and Implementation of a Collision Avoidance System for
the NPS Autonomous Underwater Vehicle (AUVII) Utilizing Ultrasonic
Sensors, Master's Thesis, Naval Postgraduate School, Monterey, California,
1989.

[Ref. 7] Brutzman, D.P., Compton, M.A., Kanayama, Y., "Autonomous Sonar
Classification using Expert Systems," draft article, OCEANS 92 conference,
Oceanic Engineering Society of the IEEE, Newport, Rhode Island,
October, 1992.

[Ref. 8] Ong, S.M., A Mission Planning Expert System with Three-Dimensional Path
Optimization for the NPS Model 2 Autonomous Underwater Vehicle,
Master's Thesis, Naval Postgraduate School, Monterey, California, 1990.

[Ref. 9] Boncal, R.J., A Study of Model Based Maneuvering Controls for Autonomous
Underwater Vehicles, Master's Thesis, Naval Postgraduate School,
Monterey, California, 1987.

[Ref. 10] MacPherson, D.L., A Computer Simulation Study of Mission Planning and
Control for the NPS Autonomous Underwater Vehicle, Master's Thesis,
Naval Postgraduate School, Monterey, California, 1988.

[Ref. 11] Jurewicz, T.A., A Real Time Autonomous Underwater Vehicle Dynamic
Simulator, Master's Thesis, Naval Postgraduate School, Monterey,
California, 1990.

243

[Ref. 12] Clotier, M., Guidance and Control System for an Autonomous Vehicle,
Master's Thesis, Naval Postgraduate School, Monterey, California, 1990.

[Ref. 13] Magrino, C., Three Dimensional Guidance for the NPS Autonomous
Underwater Vehicle, Master's Thesis, Naval Postgraduate School, Monterey,
California, 1991.

[Ref. 14] Brutzman, D.P, NPS AUV Integrated Simulator, Master's Thesis, Naval
Postgraduate School, Monterey, California, 1992.

[Ref. 15] Pappas, G., Shotts, W., O'Brien, M, Wyman, W., "The DARPA/Navy
Unmanned Undersea Vehicle Program," Unmanned Systems, v.9,n.2, pp. 24-
30, Spring 1991.

[Ref. 161 Autonomous Minehunting Technology, AMT Program Review Notes 1991,
Defense Advanced Research Projects Agency and Charles Stark Draper
Laboratories, Cambridge, Massachusetts, December 11, 1991.

[Ref. 17] Bernstein, J., Micromechanical Hydrophone, AMT Program Review Notes
1991, Charles Stark Draper Laboratories, Cambridge, Massachusetts.

[Ref. 181 RBCV-TR-88-23, University of Toronto, Robotic Exploration as Graph
Construction, by G. Dudek, M. Jenkin, E. Milios and D. Wilkes, November
1988.

[Ref. 19] Dossey, J., and others, Discrete Mathematics, pp. 98-102, Scott, Foresman
and Company, 1987.

[Ref. 20] Department of the Navy, NWP55-8-SAR/NAVAIR A1-SARBA-TAC-000,
rev. B, February 1990.

[Ref. 21] Rowe, N., Artificial Intelligence Through Prolog, pp. 191-214, Prentice Hall,
Englewood Cliffs, New Jersey, 1988.

[Ref. 22] Hart, P.E., Nilsson, N.J., Raphael, B., "A Formal Basis for the Heuristic
Determination of Minimum Cost Paths," IEEE Transactions of Systems,
Man, and Cybernetics, v. SSC-4, n. 2, pp. 100-107, July 1968.

[Ref. 23] Naval Postgraduate School Graphics Programming Project, Submarine
Launched AUV Concept Project and Modeling the Sonar Environment, by
Compton, M.A. and Cadwallader, N., September 1991.

[Ref. 24] Chappell, S.G., "A Simple World Model for an Autonomous Vehicle,"
Proceedings of the 6th International Symposium on Unmanned Untethered
Submersible Technology, Marine Systems Engineering Laboratory,
University of New Hampshire, Durham, New Hampshire, p. 512.

244

[Ref. 25] The TIMES Atlas and Encyclopedia of the Sea, Time Books Limited, 1989.

[Ref. 26] Zehner, W.J., Loggins, C.D., "Selection Criteria for UUV Sonar Systems,"
Proceedings of the 6th International Symposium on Unmanned Untethered
Submersible Technology, Marine Systems Engineering Laboratory,
University of New Hampshire, Durham, New Hampshire, pp. 350-358.

[Ref. 27] McKeon, J., Incorporation of GPS/INS into Small Autonomous Underwater
Vehicle Navigation, Master's Thesis, Naval Postgraduate School, Monterey,
California, 1992.

[Ref. 28] Compton, M., "Modeling the Sonar Environment," unpublished paper, Naval
Postgraduate School, Monterey, California, September 1991.

[Ref. 29] Herbert, M., Kanade, T., Kweon, I., "3-D Vision Techniques for Autonomous
Vehicles," NSF Range Image Understanding Workshop, pp. 273-337, 1988.

[Ref. 30] Besl, P.J., Jain, R.C., "Three-Dimensional Object Recognition," Computing
Surveys, v. 17, n. 1, pp. 77-145, March 1985.

[Ref. 31] Iyengar, S., Elfes, A., "Autonomous Underwater Robots: Perception,
Mapping and Navigation", IEEE Computer Society Press, v. 1, Los
Alamitos, California, 1991.

[Ref. 32] Luo, R., Kay, M., "Multisensor Integration and Fusion in Intelligent
Systems," IEEE Transactions on Systems, Man and Cybernetics, v. 19, n. 5,
pp. 901-931, September/October 1989.

[Ref. 33] Moravec, H., "The Stanford Cart and the CMU Rover," Proceedings of the
IEEE, v. 71, pp. 872-884, July 1983.

[Ref. 34] Stewart, K., "Three-Dimensional Modeling of Seafloor Backscatter from
Sidescan Sonar for Autonomous Classification and Navigation,"
Proceedings of the 6th International Symposium on Unmanned Untethered
Submersible Technology, University of New Hampshire, Durham, New
Hampshire, pp. 372-392, June 1989.

[Ref. 35] Blidberg, D.R., Chappell, S., Jalbert, J., Turner, R., Sedor, G., Eaton, P., "The
EAVE AUV Program at the Marine Systems Engineering Laboratory,"
Proceedings of 1st IARP Workshop on Mobile Robots for Subsea
Environments, Monterey, California, pp. 33-42, October 1990.

[Ref. 36] Floyd, C., Kanayama, Y., Magrino, C., "Underwater Obstacle Recognition
using a Low-Resolution Sonar," Proceedings of the Seventh International
Symposium on Unmanned Untethered Submersible Technology, University
of New Hampshire, Durham, New Hampshire, pp. 309-327, September
1991.

245

[Ref. 37] Kanayama, Y., Noguchi, T, "Spatial Learning by an Autonomous Mobile
Robot with Ultrasonic Sensors," University of California Santa Barbara
Department of Computer Science Technical Report TRCS86-06, February
1989.

[Ref. 38] Kanayama, Y., Noguchi, T., Hartman, B., "Sonar Data Interpretation for
Autonomous Mobile Robots," unpublished paper, Naval Postgraduate
School, Monterey, California, 1990.

[Ref. 39] Jackson, P., Introduction to Expert Systems, Addison-Wesley Publishing Co.
Inc., Workingham, England, 1991.

[Ref. 40] Sacerdoti, E., "Managing Expert System Development," Al Expert, v. 6, n. 5,
pp. 26-33, May 1991.

[Ref. 41] Brutzman, D., Floyd, C. Whalen, R., "Naval Postgraduate School
Autonomous Underwater Vehicle," Video Proceedings of the IEEE
International Conference on Robotics and Automation 92, Nice, France, May
1992.

[Ref. 42] Brutzman, D., "Integrated Simulation for Rapid Development of
Autonomous Underwater Vehicles," Proceedings of the IEEE Oceanic
Engineering Society Conference AUV 92, Washington DC, June 1992.

[Ref. 43] NASA Software Technology Branch, Clips Reference Manual, Lyndon B.
Johnson Space Center, Houston, Texas, 1991.

[Ref. 44] Giarratano, J., CLIPS User's Guide, NASA, Lyndon B. Johnson Space
Center, January 1991.

[Ref. 45] Brooks, T., "The Art of Production Systems," AI Expert, v. 7, n. 1, pp. 30-35,
January 1992.

[Ref. 46] Corkill, D., "Blackboard Systems," AI Expert, v. 6, n. 9, pp. 40-47,
September 1991.

246

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexaneria, VA 22304-6145

2. Dudley Knox Library 2
Code 52
Naval Postgraduate School
Monterey, CA 93943-5002

3. Commander
Mine Warfare Command
Charleston, SC 29408

4. Chief of Naval Research
800 North Quincy Street
Arlington, VA 22217-5000

5. Commander
Naval Sea Systems Command
ATTN: CAPT William Shotts, PMO-403
Washington, DC 20362-5 101

6. RADM George R. Sterner USN
Program Executive Officer
Submarine Combat and Weapons Systems
Department of the Navy
Washington, DC 20362-5101

7. Commander
Submarine Development Squadron TWELVE
Naval Submarine Base
Groton, CT 06340

8. Commanding Officer
Patrol Squadron FORTY
FPO San Francisco 96601-5916

9. Commanding Officer
Naval Underwater Systems Center
Newport, RI 02841-5047

10. Commanding Officer
Naval Coastal Systems Center
Panama City, FL 32407-5000

247

11. Commander
Naval Surface Weapons Center
Dahlgren, VA 22448-5000

12. CAPT Alan R. Beam USN
DARPA UWO - PRC Inc.
1555 Wilson Boulevard
Suite 600
Arlington, VA 22209

13. Dr. Richard Guertin
OP-09BC
Pentagon 4D386
Washington, DC 20301-5000

14. MAJ David Neyland USAF
DARPA ASTO
3701 North Fairfax Drive
Arlington, VA 22203

15. Commanding Officer
David Taylor Research Center
Bethesda, MD 20084-5000

16. Commander
Naval Oceans Systems Center
San Diego, CA 92152-5000

17. Mr. Randy Brill
Naval Oceans Systems Center
PO Box 997
Kailua, HI 96734-0996

18. Director
Navy Center for Applied Research in Artificial Intelligence
Naval Research Laboratory
Washington, DC 20375-5000

19. Mr. Patrick Hale
DARPA UUV Program Manager
C.S. Draper Laboratories
555 Technology Square
Cambridge, MA 02139

20. Dr. D. Richard Blidberg
Marine Systems Engineering Laboratory
Marine Program Building
University of New Hampshire
Durham, NH 03824-3525

248

21. Dr. James G. Bellingham
Sea Grant College Program
Massachusetts Institute of Technolog
292 Main Street
Cambridge, MA 02139

22. Dr. Dana R. Yoerger
Deep Submergence Laboratory
Department of Applied Ocean Physics and Engineering
Woods Hole Oceanographic Institute
Woods Hole, MA 02543

23. Dr. Robert B. MrGhee
Code CS/Mz
Chairman, Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5000

24. Dr. Anthony J. Healey
Code ME/Hy
Chairman, Mechanical Engineering Department
Naval Postgraduate School
Monterey, CA 93943-5000

25. Dr. Man-Tak Shing
Code CS/Sh
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5000

26. Dr. Yutaka Kanayama
Code CS/Ka
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5000

27. Dr. Neil C. Rowe
Code CS/Rp
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5000

28. Dr. Se-Hung Kwak
Code CS/Kw
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5000

249

29. LCDR Donald P. Brutzman
Code OR/Br
Operations Research Department
Naval Postgraduate School
Monterey, CA 93943-5000

30. LCDR Mark A. Compton
630 W. Garland Terrace
Sunnyvale, CA 94086

250

